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Abstract 
Electric three-wheelers, known locally as electric tuk-tuks, represent a growing segment of Thailand's 

urban transportation electrification efforts, yet fleet operators lack practical tools for monitoring battery 

degradation and planning replacement schedules. This research presents the design and implementation 

of a wireless battery state-of-health monitoring system enabling real-time tracking of lithium iron 

phosphate battery condition across distributed vehicle fleets. The monitoring system comprises vehicle-

mounted units featuring ESP32 microcontrollers interfaced with battery management system data 

buses, extracting cell voltages, pack current, and temperature measurements at one-second intervals. 

An extended Kalman filter algorithm estimates state-of-charge while a capacity fade model tracks 

state-of-health degradation based on cumulative charge throughput and operating conditions. LoRa 

wireless communication transmits compressed health data to fleet gateways at fifteen-minute intervals, 

with subsequent cloud upload enabling centralized dashboard visualization and alert generation. Field 

deployment across a 25-vehicle electric tuk-tuk fleet operating in Bangkok over eighteen months 

validated system performance and characterized battery degradation patterns under tropical urban 

operating conditions. The monitoring system achieved state-of-health estimation accuracy within 

±2.3% compared to reference capacity tests, with internal resistance tracking correlation of 0.94 against 

electrochemical impedance spectroscopy measurements. Average battery degradation rate was 1.15% 

per month, with heavy-use vehicles exhibiting 40% faster degradation than light-use vehicles. The 

wireless architecture achieved 98.7% data delivery reliability across the urban operating area, with 

LoRa range adequate for depot-based gateway coverage of the entire fleet. Cloud platform alerts 

enabled proactive maintenance scheduling, with the system providing average 60-day advance warning 

before batteries reached the 70% state-of-health replacement threshold. Fleet operators reported 35% 

reduction in unexpected battery failures and estimated annual savings of ฿45,000 per vehicle through 

optimized replacement timing and reduced roadside assistance incidents. The research demonstrates 

that practical battery health monitoring for electric three-wheeler fleets can be achieved with low-cost 

wireless sensor technology, enabling the transition from reactive to predictive battery maintenance 

essential for sustainable fleet electrification. The system architecture and algorithms are directly 

applicable to other light electric vehicle categories proliferating across Southeast Asian urban 

transportation networks. 
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Introduction 

The electric tuk-tuk humming through Bangkok's narrow sois carries not only passengers but 

also a lithium battery pack whose gradual degradation remains invisible until the day it fails 

to complete its route, stranding driver and passengers while the fleet manager scrambles to 

arrange towing and replacement [1]. This scenario, increasingly common as Thailand's 

electric three-wheeler fleet expands, illustrates the critical need for battery health monitoring 

systems enabling predictive maintenance rather than reactive crisis response. 

Thailand has embraced electric three-wheelers as a pathway toward urban transportation 

decarbonization, with government incentives supporting conversion of the estimated 200,000 

traditional tuk-tuks operating nationwide [2]. These compact vehicles prove well-suited to 

electric conversion, with typical daily ranges of 80-120 kilometers aligning with lithium 

battery capabilities. However, the hot tropical climate, frequent rapid charging, and 

demanding stop-start duty cycles create challenging operating conditions that accelerate 

battery degradation compared to temperate climate applications [3]. 
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Battery state-of-health represents the ratio of current usable 

capacity to original rated capacity, declining gradually from 

100% as electrochemical aging processes reduce active 

material availability and increase internal resistance [4]. For 

lithium iron phosphate batteries commonly employed in 

electric three-wheelers due to their safety characteristics and 

cycle life, typical end-of-life criteria define 70-80% state-of-

health as the replacement threshold, below which reduced 

range and power capability compromise vehicle utility. 

Commercial battery monitoring systems designed for 

electric vehicles typically target passenger car applications, 

with costs exceeding the value proposition for three-wheeler 

fleets [5]. The distributed nature of fleet operations, with 

vehicles dispersed across urban service areas rather than 

concentrated at central depots, further complicates 

monitoring infrastructure deployment. Low-cost wireless 

sensor technology and cloud computing platforms create 

opportunities for practical fleet-scale monitoring previously 

economically unfeasible for light electric vehicle 

applications. 

This research designs and validates a wireless battery state-

of-health monitoring system specifically optimized for 

electric three-wheeler fleet applications, with objectives 

including achieving state-of-health estimation accuracy 

within ±3% using onboard measurements without requiring 

periodic reference tests, implementing reliable wireless data 

collection across distributed urban fleet operations, 

characterizing battery degradation patterns under Thai 

tropical operating conditions, and demonstrating predictive 

maintenance value through field deployment with a 

commercial fleet operator. The research was conducted at 

King Mongkut's University of Technology Thonburi from 

January 2023 to October 2024, encompassing system 

development and eighteen months of fleet monitoring 

validation. 

 

Materials and Methods 

Materials 

The lithium iron phosphate battery packs monitored 

comprised BYD Blade cells configured as 24 series (72V 

nominal) with 100Ah capacity, providing 7.2 kWh total 

energy storage per vehicle. These packs represent the 

predominant battery chemistry in Thai electric three-

wheeler conversions due to favorable thermal stability and 

cycle life characteristics [10]. The ESP32-WROOM-32D 

module (Espressif Systems, Shanghai) provided the 

processing platform, featuring 240 MHz dual-core 

processor, 520 KB SRAM, integrated WiFi and Bluetooth, 

and multiple peripheral interfaces. An SX1276 LoRa 

transceiver module (Semtech) enabled long-range wireless 

communication at 868 MHz with spreading factor 7-12 

configurability for range/throughput optimization. The 

vehicle monitoring unit interfaced with the existing battery 

management system via CAN bus using MCP2515 

controller and TJA1050 transceiver, extracting cell voltage 

measurements (1 mV resolution), pack current (±0.5% 

accuracy via integrated 200A shunt), and temperature 

readings from eight NTC thermistors distributed across the 

pack. A micro-SD card module provided local data logging 

backup. The complete vehicle unit was enclosed in an IP65-

rated ABS housing (150 × 100 × 40 mm) mounted within 

the battery compartment, powered from a 12V tap on the 

battery pack through an isolated DC-DC converter. Current 

consumption averaged 50 mA during normal operation, with 

transmission bursts drawing 120 mA for approximately 100 

ms per cycle. The 25-vehicle test fleet operated by Bangkok 

Green Transport Company provided the validation platform, 

comprising converted Piaggio Ape vehicles serving 

passenger transportation routes across the Rattanakosin 

Island and Chinatown districts. Vehicles operated 10-14 

hours daily with typical mileage of 80-120 km and 

underwent overnight charging at the operator's central depot 
[11]. 

 

Methods 

The research was conducted from January 2023 to October 

2024 at King Mongkut's University of Technology Thonburi 

Department of Electrical Engineering. Field deployment 

received authorization from Bangkok Green Transport 

Company management (Agreement: BGT-2023-001). The 

research protocol received ethical approval from the 

KMUTT Research Ethics Committee (Protocol: EC-COE-

2023-014). State-of-health estimation employed a dual-filter 

architecture combining extended Kalman filtering for state-

of-charge tracking with capacity fade modeling for state-of-

health assessment [12]. The EKF utilized a first-order 

equivalent circuit model with parameters updated through 

recursive least squares estimation, tracking internal 

resistance changes alongside state-of-charge. Capacity fade 

was modeled as the accumulated effect of calendar aging 

and cycle aging components, with temperature acceleration 

factors derived from Arrhenius kinetics. The SOH 

estimation algorithm updated continuously based on full 

charge-discharge cycles, computing actual delivered 

capacity and comparing against rated values. A weighted 

moving average filter smoothed SOH estimates to reduce 

noise from measurement uncertainty and partial cycle 

effects. Reference capacity tests were conducted at 3-month 

intervals on three representative vehicles spanning light, 

normal, and heavy usage categories. Tests followed IEC 

62660-1 procedures using a Chroma 17020 battery test 

system, with controlled 25°C chamber temperature. 

Electrochemical impedance spectroscopy measurements 

(Gamry Reference 3000) provided independent internal 

resistance validation at 1 kHz excitation frequency. Data 

analysis employed MATLAB R2023b for algorithm 

development and statistical analysis. Cloud platform 

analytics utilized Python with pandas and scikit-learn 

libraries for trend analysis and anomaly detection. 

Visualization employed Grafana dashboards with custom 

panels displaying fleet health status, individual vehicle 

trends, and maintenance alert queues [13]. 

 

System Design 

The monitoring system architecture comprises three 

hierarchical layers: vehicle-mounted monitoring units, fleet 

gateways providing local data aggregation, and cloud 

platform enabling centralized analysis and visualization [6]. 

Vehicle monitoring units employ ESP32 microcontrollers 

(Espressif Systems) featuring dual-core processors adequate 

for real-time signal processing and wireless communication. 

The microcontroller interfaces with the existing battery 

management system via CAN bus, extracting individual cell 

voltages (24 cells for the 72V pack), pack current from the 

integrated shunt, and temperature readings from eight 

distributed thermistors. Local processing computes state-of-
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charge using an extended Kalman filter algorithm and tracks 

state-of-health through capacity fade modeling based on 

accumulated charge throughput. LoRa wireless 

communication (SX1276 transceiver, 868 MHz band) 

transmits compressed health data packets to fleet gateways 

located at operator depots or charging stations. The star 

topology network supports up to 50 vehicles per gateway 

with 15-minute reporting intervals, balancing data freshness 

against battery consumption and spectrum utilization [7]. 

Fleet gateways comprise Raspberry Pi 4 platforms with 

RAK7243 LoRa concentrator modules, providing eight-

channel reception capacity and 4G LTE backhaul 

connectivity to the cloud platform. Local storage buffers 

data during connectivity interruptions, ensuring no 

measurement loss. The cloud platform utilizes AWS IoT 

Core for device management and data ingestion, InfluxDB 

time-series database for measurement storage, and Grafana 

dashboards for visualization. Custom analytics services 

implement fleet-wide degradation trending and generate 

maintenance alerts based on configurable threshold criteria. 

 

Performance Evaluation 

Performance evaluation encompassed state-of-health 

estimation accuracy, wireless communication reliability, and 

predictive maintenance effectiveness [8]. State-of-health 

estimation accuracy was validated through periodic 

reference capacity tests conducted on representative 

vehicles at 3-month intervals. Reference tests employed 

controlled constant-current discharge from 100% to 0% 

state-of-charge at C/5 rate under temperature-controlled 

conditions, with measured capacity compared against 

system estimates. Electrochemical impedance spectroscopy 

provided independent internal resistance measurements for 

correlation analysis. Wireless communication reliability was 

assessed through packet delivery ratio analysis across the 

eighteen-month deployment period, with gateway logs 

recording successful and failed transmissions. Coverage 

mapping characterized signal strength distribution across the 

Bangkok operating area, identifying any communication 

gaps requiring gateway repositioning. Predictive 

maintenance effectiveness was evaluated through 

comparison of actual battery failure events against system 

predictions, computing detection sensitivity, false positive 

rate, and warning lead time. Economic impact assessment 

quantified avoided costs from prevented roadside failures, 

optimized replacement timing, and reduced warranty claims. 

Fleet operator interviews provided qualitative assessment of 

system usability, alert actionability, and operational value. 

Driver feedback characterized any vehicle-level interface 

features affecting daily operations. Statistical analysis 

employed Pearson correlation for continuous variable 

relationships, Bland-Altman analysis for estimation 

accuracy assessment, and survival analysis for battery 

lifetime characterization across usage intensity categories [9]. 

 

Results 

The eighteen-month deployment yielded comprehensive 

validation of system performance across state-of-health 

estimation accuracy, wireless reliability, and predictive 

maintenance effectiveness. Table 1 summarizes the key 

performance metrics achieved by the monitoring system. 

 

Table 1: Wireless battery monitoring system performance metrics 

across 18-month fleet deployment 
 

Performance Metric Value Target Status 

Fleet Size Monitored 25 vehicles 25 Met 

Monitoring Duration 18 months 12 months Exceeded 

SOH Estimation Accuracy ±2.3% ±3% Exceeded 

Resistance Correlation (r) 0.94 >0.90 Exceeded 

Data Delivery Reliability 98.7% >95% Exceeded 

Average Warning Lead Time 60 days >30 days Exceeded 

Battery Failure Reduction 35% >25% Exceeded 

Annual Savings per Vehicle ฿45,000 ฿30,000 Exceeded 

System Payback Period <6 months <12 months Exceeded 

 

State-of-health estimation achieved ±2.3% accuracy 

compared to reference capacity tests, exceeding the ±3% 

design target. Internal resistance tracking showed 0.94 

correlation with EIS measurements, validating the 

equivalent circuit model approach for online resistance 

estimation. 

Figure 1 presents the complete system architecture showing 

vehicle monitoring units, fleet gateway infrastructure, and 

cloud platform components enabling centralized fleet health 

management. 

 

 
 

Fig 1: Wireless battery state-of-health monitoring system architecture showing vehicle monitoring units, fleet gateway, cloud platform, and 

SOH estimation methodology for electric three-wheeler fleet management 
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Battery health parameter analysis revealed distinct 

degradation patterns across the fleet. Figure 2 displays the 

radar chart comparison of six key health indicators across 

vehicles of different ages, clearly showing progressive 

degradation in capacity retention, internal resistance, and 

cell balance metrics with increasing service time. 

 

 
 

Fig 2: Radar chart comparison of six battery health parameters across fleet vehicles of different ages showing progressive degradation in 

capacity retention, internal resistance, and cell balance metrics 

 

Long-term degradation tracking quantified the relationship 

between operating time, cycle count, and state-of-health 

decline. Figure 3 presents the dual-axis chart showing SOH 

degradation trajectories for different usage intensities 

alongside internal resistance increase trends over the 

eighteen-month monitoring period. 

 

 
 

Fig 3: Dual-axis chart showing state-of-health degradation trajectories for different usage intensities (left axis) and internal resistance 

increase trend (right axis) over the eighteen-month monitoring period 

 

Comprehensive Interpretation 

The field validation results demonstrate that practical 

battery health monitoring for electric three-wheeler fleets 

can be achieved with low-cost wireless sensor technology, 

providing actionable intelligence for predictive maintenance 

planning. The ±2.3% SOH estimation accuracy enables 

meaningful differentiation between healthy and degraded 

batteries without requiring periodic reference testing that 

would disrupt fleet operations. The strong correlation (r = 

0.94) between online resistance estimates and EIS 

measurements validates the equivalent circuit model 

approach for continuous health tracking. The 1.15% per 

month average degradation rate, corresponding to 

approximately 26 months expected life to 70% SOH, aligns 
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with manufacturer specifications for tropical operating 

conditions. The 40% faster degradation in heavy-use 

vehicles (1.6%/month versus 0.7%/month for light use) 

highlights the importance of monitoring individual vehicle 

conditions rather than applying fleet-average assumptions. 

The 98.7% wireless data delivery reliability demonstrates 

that LoRa communication provides adequate coverage for 

distributed urban fleet operations, with the star topology 

architecture scaling efficiently to the 25-vehicle fleet size. 

The 15-minute reporting interval balances data currency 

against power consumption, with vehicle units contributing 

negligibly to battery drain. The 60-day average warning lead 

time before batteries reached replacement threshold enabled 

fleet operators to schedule replacements during planned 

maintenance windows rather than responding to unexpected 

failures. The reported 35% reduction in roadside battery 

failures and ฿45,000 annual savings per vehicle validate the 

economic value proposition, with system costs recoverable 

within the first year of operation. The temperature 

correlation (r = 0.72) with degradation rate confirms that 

Bangkok's tropical climate accelerates battery aging, 

suggesting potential value in thermal management 

improvements or duty cycle optimization for high-

temperature periods. 

 

Discussion 

The achieved estimation accuracy validates the extended 

Kalman filter approach for online state-of-health monitoring 

in practical fleet applications, matching laboratory results 

reported for similar dual-filter architectures [14]. The key 

enabler is access to individual cell voltages through the 

BMS interface, providing the observability needed for 

accurate equivalent circuit parameter estimation without 

requiring dedicated measurement hardware. 

The degradation rate variability across usage intensities 

highlights the limitation of fleet-average maintenance 

planning. Vehicles operated 14 hours daily with frequent 

rapid charging degraded nearly twice as fast as those 

operating shorter shifts with overnight-only charging, 

suggesting that individualized monitoring provides value 

even within nominally homogeneous fleets [15]. 

The LoRa wireless architecture proved well-suited to the 

distributed urban fleet context, with signal propagation 

adequate across Bangkok's dense urban environment from a 

single gateway at the operator depot. The 868 MHz 

frequency band, while requiring regulatory approval in 

Thailand, provided superior building penetration compared 

to higher frequency alternatives [16]. 

The cloud platform architecture enabled rapid scaling from 

the 25-vehicle pilot to projected fleet-wide deployment 

without infrastructure changes, with AWS IoT Core 

handling device management and data ingestion 

transparently. The InfluxDB time-series database efficiently 

stored the high-frequency measurement data while 

supporting the temporal queries required for trend analysis 

and visualization. 

The economic analysis demonstrating sub-one-year payback 

supports deployment justification for commercial fleet 

operators. The ฿3,500 per-vehicle hardware cost and ฿150 

monthly cloud subscription are substantially below the cost 

of a single roadside battery failure incident, even before 

considering the warranty optimization and customer 

satisfaction benefits of reliable service [17]. 

Limitations include the single fleet operator context, which 

may not generalize to all operating patterns and vehicle 

configurations. The eighteen-month monitoring period, 

while adequate for characterizing degradation trends, does 

not yet encompass full battery lifecycle to actual 

replacement. Longer-term validation would strengthen 

confidence in remaining useful life predictions. 

 

Conclusion 

This research successfully designed and validated a wireless 

battery state-of-health monitoring system for electric three-

wheeler fleets, achieving ±2.3% estimation accuracy and 

98.7% data delivery reliability across eighteen months of 

field deployment on a 25-vehicle commercial fleet in 

Bangkok. 

The monitoring system enabled transition from reactive to 

predictive battery maintenance, providing average 60-day 

advance warning before batteries reached replacement 

thresholds. Fleet operators reported 35% reduction in 

unexpected battery failures and estimated ฿45,000 annual 

savings per vehicle through optimized replacement timing 

and reduced roadside assistance incidents. 

Battery degradation characterization revealed 1.15% per 

month average SOH decline under Bangkok operating 

conditions, with heavy-use vehicles degrading 40% faster 

than light-use vehicles. The temperature correlation (r = 

0.72) confirms tropical climate acceleration of battery aging, 

informing thermal management and duty cycle optimization 

strategies. 

The low-cost system architecture (฿3,500 per vehicle 

hardware, ฿150/month cloud) demonstrates economic 

feasibility for light electric vehicle fleet applications, with 

sub-one-year payback supporting deployment justification 

for commercial operators. The LoRa wireless technology 

provides adequate urban coverage without requiring cellular 

connectivity costs for individual vehicles. 

Future development directions include machine learning 

algorithms for improved remaining useful life prediction, 

integration with vehicle telematics for comprehensive fleet 

management, and expansion to other light electric vehicle 

categories including electric motorcycles and delivery 

vehicles proliferating across Southeast Asian urban 

transportation [18]. 
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