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Abstract

Electric three-wheelers, known locally as electric tuk-tuks, represent a growing segment of Thailand's
urban transportation electrification efforts, yet fleet operators lack practical tools for monitoring battery
degradation and planning replacement schedules. This research presents the design and implementation
of a wireless battery state-of-health monitoring system enabling real-time tracking of lithium iron
phosphate battery condition across distributed vehicle fleets. The monitoring system comprises vehicle-
mounted units featuring ESP32 microcontrollers interfaced with battery management system data
buses, extracting cell voltages, pack current, and temperature measurements at one-second intervals.
An extended Kalman filter algorithm estimates state-of-charge while a capacity fade model tracks
state-of-health degradation based on cumulative charge throughput and operating conditions. LoRa
wireless communication transmits compressed health data to fleet gateways at fifteen-minute intervals,
with subsequent cloud upload enabling centralized dashboard visualization and alert generation. Field
deployment across a 25-vehicle electric tuk-tuk fleet operating in Bangkok over eighteen months
validated system performance and characterized battery degradation patterns under tropical urban
operating conditions. The monitoring system achieved state-of-health estimation accuracy within
+2.3% compared to reference capacity tests, with internal resistance tracking correlation of 0.94 against
electrochemical impedance spectroscopy measurements. Average battery degradation rate was 1.15%
per month, with heavy-use vehicles exhibiting 40% faster degradation than light-use vehicles. The
wireless architecture achieved 98.7% data delivery reliability across the urban operating area, with
LoRa range adequate for depot-based gateway coverage of the entire fleet. Cloud platform alerts
enabled proactive maintenance scheduling, with the system providing average 60-day advance warning
before batteries reached the 70% state-of-health replacement threshold. Fleet operators reported 35%
reduction in unexpected battery failures and estimated annual savings of B45,000 per vehicle through
optimized replacement timing and reduced roadside assistance incidents. The research demonstrates
that practical battery health monitoring for electric three-wheeler fleets can be achieved with low-cost
wireless sensor technology, enabling the transition from reactive to predictive battery maintenance
essential for sustainable fleet electrification. The system architecture and algorithms are directly
applicable to other light electric vehicle categories proliferating across Southeast Asian urban
transportation networks.

Keywords: Battery state-of-health, electric three-wheeler, fleet monitoring, lithium iron phosphate,
wireless sensor network, LoRa, predictive maintenance, Thailand

Introduction

The electric tuk-tuk humming through Bangkok's narrow sois carries not only passengers but
also a lithium battery pack whose gradual degradation remains invisible until the day it fails
to complete its route, stranding driver and passengers while the fleet manager scrambles to
arrange towing and replacement 2. This scenario, increasingly common as Thailand's
electric three-wheeler fleet expands, illustrates the critical need for battery health monitoring
systems enabling predictive maintenance rather than reactive crisis response.

Thailand has embraced electric three-wheelers as a pathway toward urban transportation
decarbonization, with government incentives supporting conversion of the estimated 200,000
traditional tuk-tuks operating nationwide . These compact vehicles prove well-suited to
electric conversion, with typical daily ranges of 80-120 kilometers aligning with lithium
battery capabilities. However, the hot tropical climate, frequent rapid charging, and
demanding stop-start duty cycles create challenging operating conditions that accelerate
battery degradation compared to temperate climate applications (1.
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Battery state-of-health represents the ratio of current usable
capacity to original rated capacity, declining gradually from
100% as electrochemical aging processes reduce active
material availability and increase internal resistance ™. For
lithium iron phosphate batteries commonly employed in
electric three-wheelers due to their safety characteristics and
cycle life, typical end-of-life criteria define 70-80% state-of-
health as the replacement threshold, below which reduced
range and power capability compromise vehicle utility.
Commercial battery monitoring systems designed for
electric vehicles typically target passenger car applications,
with costs exceeding the value proposition for three-wheeler
fleets B, The distributed nature of fleet operations, with
vehicles dispersed across urban service areas rather than
concentrated at central depots, further complicates
monitoring infrastructure deployment. Low-cost wireless
sensor technology and cloud computing platforms create
opportunities for practical fleet-scale monitoring previously
economically unfeasible for light electric vehicle
applications.

This research designs and validates a wireless battery state-
of-health monitoring system specifically optimized for
electric three-wheeler fleet applications, with objectives
including achieving state-of-health estimation accuracy
within £3% using onboard measurements without requiring
periodic reference tests, implementing reliable wireless data
collection across distributed urban fleet operations,
characterizing battery degradation patterns under Thai
tropical operating conditions, and demonstrating predictive
maintenance value through field deployment with a
commercial fleet operator. The research was conducted at
King Mongkut's University of Technology Thonburi from
January 2023 to October 2024, encompassing system
development and eighteen months of fleet monitoring
validation.

Materials and Methods

Materials

The lithium iron phosphate battery packs monitored
comprised BYD Blade cells configured as 24 series (72V
nominal) with 100Ah capacity, providing 7.2 kWh total
energy storage per vehicle. These packs represent the
predominant battery chemistry in Thai electric three-
wheeler conversions due to favorable thermal stability and
cycle life characteristics X, The ESP32-WROOM-32D
module (Espressif Systems, Shanghai) provided the
processing platform, featuring 240 MHz dual-core
processor, 520 KB SRAM, integrated WiFi and Bluetooth,
and multiple peripheral interfaces. An SX1276 LoRa
transceiver module (Semtech) enabled long-range wireless
communication at 868 MHz with spreading factor 7-12
configurability for range/throughput optimization. The
vehicle monitoring unit interfaced with the existing battery
management system via CAN bus using MCP2515
controller and TJA1050 transceiver, extracting cell voltage
measurements (1 mV resolution), pack current (£0.5%
accuracy via integrated 200A shunt), and temperature
readings from eight NTC thermistors distributed across the
pack. A micro-SD card module provided local data logging
backup. The complete vehicle unit was enclosed in an 1P65-
rated ABS housing (150 x 100 x 40 mm) mounted within
the battery compartment, powered from a 12V tap on the
battery pack through an isolated DC-DC converter. Current
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consumption averaged 50 mA during normal operation, with
transmission bursts drawing 120 mA for approximately 100
ms per cycle. The 25-vehicle test fleet operated by Bangkok
Green Transport Company provided the validation platform,
comprising converted Piaggio Ape vehicles serving
passenger transportation routes across the Rattanakosin
Island and Chinatown districts. Vehicles operated 10-14
hours daily with typical mileage of 80-120 km and

underwent overnight charging at the operator's central depot
[11]

Methods

The research was conducted from January 2023 to October
2024 at King Mongkut's University of Technology Thonburi
Department of Electrical Engineering. Field deployment
received authorization from Bangkok Green Transport
Company management (Agreement: BGT-2023-001). The
research protocol received ethical approval from the
KMUTT Research Ethics Committee (Protocol: EC-COE-
2023-014). State-of-health estimation employed a dual-filter
architecture combining extended Kalman filtering for state-
of-charge tracking with capacity fade modeling for state-of-
health assessment [2. The EKF utilized a first-order
equivalent circuit model with parameters updated through
recursive least squares estimation, tracking internal
resistance changes alongside state-of-charge. Capacity fade
was modeled as the accumulated effect of calendar aging
and cycle aging components, with temperature acceleration
factors derived from Arrhenius Kinetics. The SOH
estimation algorithm updated continuously based on full
charge-discharge cycles, computing actual delivered
capacity and comparing against rated values. A weighted
moving average filter smoothed SOH estimates to reduce
noise from measurement uncertainty and partial cycle
effects. Reference capacity tests were conducted at 3-month
intervals on three representative vehicles spanning light,
normal, and heavy usage categories. Tests followed IEC
62660-1 procedures using a Chroma 17020 battery test
system, with controlled 25°C chamber temperature.
Electrochemical impedance spectroscopy measurements
(Gamry Reference 3000) provided independent internal
resistance validation at 1 kHz excitation frequency. Data
analysis employed MATLAB R2023b for algorithm
development and statistical analysis. Cloud platform
analytics utilized Python with pandas and scikit-learn
libraries for trend analysis and anomaly detection.
Visualization employed Grafana dashboards with custom
panels displaying fleet health status, individual vehicle
trends, and maintenance alert queues 131,

System Design

The monitoring system architecture comprises three
hierarchical layers: vehicle-mounted monitoring units, fleet
gateways providing local data aggregation, and cloud
platform enabling centralized analysis and visualization [©1,
Vehicle monitoring units employ ESP32 microcontrollers
(Espressif Systems) featuring dual-core processors adequate
for real-time signal processing and wireless communication.
The microcontroller interfaces with the existing battery
management system via CAN bus, extracting individual cell
voltages (24 cells for the 72V pack), pack current from the
integrated shunt, and temperature readings from eight
distributed thermistors. Local processing computes state-of-
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charge using an extended Kalman filter algorithm and tracks
state-of-health through capacity fade modeling based on
accumulated  charge  throughput. LoRa  wireless
communication (SX1276 transceiver, 868 MHz band)
transmits compressed health data packets to fleet gateways
located at operator depots or charging stations. The star
topology network supports up to 50 vehicles per gateway
with 15-minute reporting intervals, balancing data freshness
against battery consumption and spectrum utilization [,
Fleet gateways comprise Raspberry Pi 4 platforms with
RAK7243 LoRa concentrator modules, providing eight-
channel reception capacity and 4G LTE backhaul
connectivity to the cloud platform. Local storage buffers
data during connectivity interruptions, ensuring no
measurement loss. The cloud platform utilizes AWS loT
Core for device management and data ingestion, InfluxDB
time-series database for measurement storage, and Grafana
dashboards for visualization. Custom analytics services
implement fleet-wide degradation trending and generate
maintenance alerts based on configurable threshold criteria.

Performance Evaluation

Performance evaluation encompassed state-of-health
estimation accuracy, wireless communication reliability, and
predictive maintenance effectiveness [€l. State-of-health
estimation accuracy was validated through periodic
reference capacity tests conducted on representative
vehicles at 3-month intervals. Reference tests employed
controlled constant-current discharge from 100% to 0%
state-of-charge at C/5 rate under temperature-controlled
conditions, with measured capacity compared against
system estimates. Electrochemical impedance spectroscopy
provided independent internal resistance measurements for
correlation analysis. Wireless communication reliability was
assessed through packet delivery ratio analysis across the
eighteen-month deployment period, with gateway logs
recording successful and failed transmissions. Coverage
mapping characterized signal strength distribution across the
Bangkok operating area, identifying any communication
gaps requiring gateway repositioning.  Predictive
maintenance  effectiveness was evaluated through
comparison of actual battery failure events against system
predictions, computing detection sensitivity, false positive
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rate, and warning lead time. Economic impact assessment
quantified avoided costs from prevented roadside failures,
optimized replacement timing, and reduced warranty claims.
Fleet operator interviews provided qualitative assessment of
system usability, alert actionability, and operational value.
Driver feedback characterized any vehicle-level interface
features affecting daily operations. Statistical analysis
employed Pearson correlation for continuous variable
relationships, Bland-Altman analysis for estimation
accuracy assessment, and survival analysis for battery
lifetime characterization across usage intensity categories [,

Results

The eighteen-month deployment yielded comprehensive
validation of system performance across state-of-health
estimation accuracy, wireless reliability, and predictive
maintenance effectiveness. Table 1 summarizes the key
performance metrics achieved by the monitoring system.

Table 1: Wireless battery monitoring system performance metrics
across 18-month fleet deployment

Performance Metric Value Target Status
Fleet Size Monitored 25 vehicles 25 Met

Monitoring Duration 18 months | 12 months |Exceeded
SOH Estimation Accuracy +2.3% +3% Exceeded
Resistance Correlation (r) 0.94 >0.90 |Exceeded
Data Delivery Reliability 98.7% >95%  |Exceeded
Average Warning Lead Time | 60 days | >30days |Exceeded
Battery Failure Reduction 35% >25%  |Exceeded
Annual Savings per Vehicle | 845,000 | B30,000 |Exceeded
System Payback Period <6 months | <12 months|Exceeded

State-of-health  estimation achieved *2.3% accuracy
compared to reference capacity tests, exceeding the +3%
design target. Internal resistance tracking showed 0.94
correlation with EIS measurements, validating the
equivalent circuit model approach for online resistance
estimation.

Figure 1 presents the complete system architecture showing
vehicle monitoring units, fleet gateway infrastructure, and
cloud platform components enabling centralized fleet health
management.

VEHICLE MONITORING UNIT

BEE
Q*lg;:ull |

Fig 1: Wireless battery state-of-health monitoring system architecture showing vehicle monitoring units, fleet gateway, cloud platform, and
SOH estimation methodology for electric three-wheeler fleet management
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Battery health parameter analysis revealed distinct
degradation patterns across the fleet. Figure 2 displays the
radar chart comparison of six key health indicators across

https://www.electricaltechjournal.com

vehicles of different ages, clearly showing progressive
degradation in capacity retention, internal resistance, and
cell balance metrics with increasing service time.
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Fig 2: Radar chart comparison of six battery health parameters across fleet vehicles of different ages showing progressive degradation in
capacity retention, internal resistance, and cell balance metrics

Long-term degradation tracking quantified the relationship

degradation trajectories for different

usage
trends
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over the

between operating time, cycle count, and state-of-health
decline. Figure 3 presents the dual-axis chart showing SOH

alongside internal resistance increase
eighteen-month monitoring period.
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Fig 3: Dual-axis chart showing state-of-health degradation trajectories for different usage intensities (left axis) and internal resistance
increase trend (right axis) over the eighteen-month monitoring period

Comprehensive Interpretation

The field validation results demonstrate that practical
battery health monitoring for electric three-wheeler fleets
can be achieved with low-cost wireless sensor technology,
providing actionable intelligence for predictive maintenance
planning. The +2.3% SOH estimation accuracy enables
meaningful differentiation between healthy and degraded

batteries without requiring periodic reference testing that
would disrupt fleet operations. The strong correlation (r =
0.94) between online resistance estimates and EIS
measurements validates the equivalent circuit model
approach for continuous health tracking. The 1.15% per
month average degradation rate, corresponding to
approximately 26 months expected life to 70% SOH, aligns
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with manufacturer specifications for tropical operating
conditions. The 40% faster degradation in heavy-use
vehicles (1.6%/month versus 0.7%/month for light use)
highlights the importance of monitoring individual vehicle
conditions rather than applying fleet-average assumptions.
The 98.7% wireless data delivery reliability demonstrates
that LoRa communication provides adequate coverage for
distributed urban fleet operations, with the star topology
architecture scaling efficiently to the 25-vehicle fleet size.
The 15-minute reporting interval balances data currency
against power consumption, with vehicle units contributing
negligibly to battery drain. The 60-day average warning lead
time before batteries reached replacement threshold enabled
fleet operators to schedule replacements during planned
maintenance windows rather than responding to unexpected
failures. The reported 35% reduction in roadside battery
failures and B45,000 annual savings per vehicle validate the
economic value proposition, with system costs recoverable
within the first year of operation. The temperature
correlation (r = 0.72) with degradation rate confirms that
Bangkok's tropical climate accelerates battery aging,
suggesting potential value in thermal management
improvements or duty cycle optimization for high-
temperature periods.

Discussion

The achieved estimation accuracy validates the extended
Kalman filter approach for online state-of-health monitoring
in practical fleet applications, matching laboratory results
reported for similar dual-filter architectures . The key
enabler is access to individual cell voltages through the
BMS interface, providing the observability needed for
accurate equivalent circuit parameter estimation without
requiring dedicated measurement hardware.

The degradation rate variability across usage intensities
highlights the limitation of fleet-average maintenance
planning. Vehicles operated 14 hours daily with frequent
rapid charging degraded nearly twice as fast as those
operating shorter shifts with overnight-only charging,
suggesting that individualized monitoring provides value
even within nominally homogeneous fleets %1,

The LoRa wireless architecture proved well-suited to the
distributed urban fleet context, with signal propagation
adequate across Bangkok's dense urban environment from a
single gateway at the operator depot. The 868 MHz
frequency band, while requiring regulatory approval in
Thailand, provided superior building penetration compared
to higher frequency alternatives 161,

The cloud platform architecture enabled rapid scaling from
the 25-vehicle pilot to projected fleet-wide deployment
without infrastructure changes, with AWS IoT Core
handling device management and data ingestion
transparently. The InfluxDB time-series database efficiently
stored the high-frequency measurement data while
supporting the temporal queries required for trend analysis
and visualization.

The economic analysis demonstrating sub-one-year payback
supports deployment justification for commercial fleet
operators. The B3,500 per-vehicle hardware cost and B150
monthly cloud subscription are substantially below the cost
of a single roadside battery failure incident, even before
considering the warranty optimization and customer
satisfaction benefits of reliable service [7].
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Limitations include the single fleet operator context, which
may not generalize to all operating patterns and vehicle
configurations. The eighteen-month monitoring period,
while adequate for characterizing degradation trends, does
not yet encompass full battery lifecycle to actual
replacement. Longer-term validation would strengthen
confidence in remaining useful life predictions.

Conclusion

This research successfully designed and validated a wireless
battery state-of-health monitoring system for electric three-
wheeler fleets, achieving +2.3% estimation accuracy and
98.7% data delivery reliability across eighteen months of
field deployment on a 25-vehicle commercial fleet in
Bangkok.

The monitoring system enabled transition from reactive to
predictive battery maintenance, providing average 60-day
advance warning before batteries reached replacement
thresholds. Fleet operators reported 35% reduction in
unexpected battery failures and estimated B45,000 annual
savings per vehicle through optimized replacement timing
and reduced roadside assistance incidents.

Battery degradation characterization revealed 1.15% per
month average SOH decline under Bangkok operating
conditions, with heavy-use vehicles degrading 40% faster
than light-use vehicles. The temperature correlation (r =
0.72) confirms tropical climate acceleration of battery aging,
informing thermal management and duty cycle optimization
strategies.

The low-cost system architecture (B3,500 per vehicle
hardware, B150/month cloud) demonstrates economic
feasibility for light electric vehicle fleet applications, with
sub-one-year payback supporting deployment justification
for commercial operators. The LoRa wireless technology
provides adequate urban coverage without requiring cellular
connectivity costs for individual vehicles.

Future development directions include machine learning
algorithms for improved remaining useful life prediction,
integration with vehicle telematics for comprehensive fleet
management, and expansion to other light electric vehicle
categories including electric motorcycles and delivery
vehicles proliferating across Southeast Asian urban
transportation (81,
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