

International Journal of Research in Advanced Electronics Engineering

E-ISSN: 2708-4566
P-ISSN: 2708-4558
Impact Factor (RJIF): 5.62
IJRAEE 2026; 7(1): 58-63
© 2026 IJRAEE
www.electrojournal.com
Received: 11-12-2025
Accepted: 15-01-2026

Müller
Institute for High Voltage
Technology, Technical
University of Munich, Munich,
Germany

Stefan K
Institute for High Voltage
Technology, Technical
University of Munich, Munich,
Germany

Implementation of predictive maintenance alert system for distribution transformers using thermal imaging

Müller and Stefan K

DOI: <https://www.doi.org/10.22271/27084558.2026.v7.i1a.78>

Abstract

Distribution transformers represent critical assets within electrical networks, with unexpected failures causing significant economic losses through equipment damage, service interruption penalties, and emergency repair costs. Traditional time-based maintenance strategies often prove inefficient, either replacing components with remaining useful life or failing to detect developing faults before catastrophic failure occurs. This research presents the implementation and field validation of a predictive maintenance alert system utilizing automated thermal imaging to detect incipient transformer faults through temperature anomaly identification. The system employs FLIR A615 thermal cameras with 640×480 pixel resolution mounted at distribution substations, capturing scheduled thermal images of transformer assemblies including bushings, tank surfaces, and radiator components. Edge computing platforms running OpenCV-based image processing algorithms extract temperature features from defined regions of interest, comparing measured values against adaptive thresholds accounting for load conditions and ambient temperature. Anomalies triggering warning, critical, or emergency alerts propagate through automated notification channels while logging to time-series databases supporting trend analysis and predictive modeling. Field deployment across 45 distribution transformers in the Bavarian rural network over twelve months detected 150 thermal anomalies, with fault type distribution comprising loose connections (32%), bushing degradation (24%), cooling system issues (18%), oil quality problems (12%), overloading (8%), and winding hot spots (4%). Severity classification identified 58% warning-level, 31% critical-level, and 11% emergency-level conditions requiring immediate intervention. The system demonstrated 93.3% sensitivity in detecting confirmed faults with 3.2% false positive rate, achieving mean detection lead time of 18 days before potential failure would have occurred. The predictive maintenance approach achieved 86% reduction in unplanned transformer outages compared to the previous year operating under time-based maintenance, with estimated annual cost savings of €124,500 through avoided emergency repairs and prevented equipment damage. System improvement of distribution reliability metrics included 12.3 minute reduction in System Average Interruption Duration Index contribution from transformer failures. The research demonstrates that automated thermal imaging provides cost-effective continuous condition monitoring enabling transition from reactive to predictive transformer maintenance strategies, with documented reliability improvements and economic benefits supporting broader deployment across distribution network assets.

Keywords: Predictive maintenance, thermal imaging, distribution transformer, condition monitoring, fault detection, infrared thermography, power system reliability, Germany

Introduction

The transformer explosion that darkened a Bavarian village for eighteen hours last winter traced ultimately to a loose connection that had been quietly generating excess heat for months, a developing fault that would have been clearly visible in thermal imagery had anyone been looking ^[1]. This incident, replicated countless times across global distribution networks, illustrates the fundamental limitation of time-based maintenance: scheduled inspections occur on calendar intervals regardless of actual equipment condition, creating gaps during which incipient faults progress toward failure without detection ^[2]. Distribution transformers operating at medium voltage levels (10-20 kV primary) represent the most numerous transformer category in electrical networks, with Germany alone operating approximately 580,000 units serving residential, commercial, and light industrial loads ^[3].

Correspondence
Müller
Institute for High Voltage
Technology, Technical
University of Munich, Munich,
Germany

Their distributed deployment across substations, pole-mounted installations, and pad-mounted enclosures complicates routine inspection, while their critical role in maintaining customer supply elevates the consequences of unplanned failure. Annual transformer failure rates typically range from 0.5-2% depending on age, loading, and environmental conditions, with each failure potentially causing extended outages affecting hundreds of customers [4].

Thermal imaging has long been recognized as a powerful diagnostic technique for electrical equipment, with temperature elevation providing early indication of developing faults including loose connections, insulation degradation, and cooling system deficiencies [5]. Traditional thermographic inspection programs employ portable cameras operated by trained technicians during periodic site visits, a labor-intensive approach limiting inspection frequency and potentially missing rapidly developing conditions between scheduled surveys [6].

The convergence of affordable fixed thermal cameras, edge computing platforms, and cloud connectivity creates opportunities for continuous automated thermographic monitoring previously impractical due to equipment costs and data processing limitations [7]. Automated systems can capture thermal images at frequent intervals around the clock, applying consistent analysis algorithms without the variability inherent in manual interpretation while immediately alerting maintenance personnel to detected anomalies.

This research implements and validates a predictive maintenance alert system for distribution transformers combining automated thermal imaging with intelligent anomaly detection, with specific objectives including demonstrating detection of developing faults with adequate lead time for planned intervention, achieving false positive rates low enough to maintain operator confidence in alerts, quantifying reliability improvements and cost benefits supporting investment justification, and establishing operational procedures for alert response and system integration with existing maintenance workflows. The research was conducted at Technical University of Munich in collaboration with Bayernwerk Netz GmbH from September 2023 to November 2024, with field deployment across rural distribution network assets in the Landshut service territory.

Theoretical Background

Thermal imaging detects infrared radiation emitted by objects in proportion to their temperature, with Stefan-Boltzmann law establishing the fourth-power relationship between absolute temperature and radiated power [8]. For electrical equipment operating at typical ambient temperatures, the 8-14 μm long-wave infrared band provides optimal sensitivity and atmospheric transmission, with uncooled microbolometer detector arrays enabling cost-effective camera implementations suitable for fixed installation. Temperature rise in electrical connections follows Joule heating principles, with power dissipation proportional to current squared times resistance [9]. Deteriorating connections exhibiting increased resistance generate proportionally increased heating at constant current, producing temperature elevations detectable before resistance increases sufficiently to cause functional failure.

The relationship between temperature rise and fault severity enables graduated alert levels supporting appropriate response prioritization. Transformer thermal behavior follows characteristic patterns dependent on load current, ambient temperature, and cooling system effectiveness [10]. The thermal time constant of oil-filled distribution transformers typically ranges from 1-3 hours, meaning temperature changes lag load variations, requiring analysis algorithms accounting for recent load history rather than instantaneous conditions. Hot spot temperature, typically occurring at winding locations with poorest cooling, determines insulation aging rate following Arrhenius kinetics with approximately doubling of aging rate for each 6-8 $^{\circ}\text{C}$ temperature increase above rated limits.

Material and Methods

Material

The thermal imaging system employed FLIR A615 cameras (FLIR Systems, Wilsonville, USA) featuring 640 \times 480 pixel uncooled microbolometer detectors with temperature measurement range of -40 $^{\circ}\text{C}$ to 150 $^{\circ}\text{C}$ and accuracy of ± 2 $^{\circ}\text{C}$ or $\pm 2\%$ of reading. Camera installation at 3-5 meter distance from transformer assemblies provided full coverage of HV bushings, LV bushings, tank surfaces, and radiator sections within the 25 $^{\circ} \times$ 19 $^{\circ}$ field of view. Weatherproof housing (IP66) with thermostatically controlled heating and ventilation maintained camera operation across the -25 $^{\circ}\text{C}$ to +50 $^{\circ}\text{C}$ ambient temperature range encountered in Bavarian climate conditions. Edge computing platforms comprised Raspberry Pi 4 Model B units (8 GB RAM) running Debian Linux with OpenCV 4.5 for image processing and Python-based analysis algorithms. Industrial-grade SD cards provided local storage for captured images and processing logs, with 4G LTE cellular modems enabling remote connectivity for data upload and system management. Weather monitoring stations (Davis Vantage Pro2) at each substation provided ambient temperature, wind speed, humidity, and solar radiation measurements supporting environmental compensation of thermal measurements. Load current monitoring employed existing substation metering infrastructure with Modbus RTU interface providing 1-minute resolution load data to the edge computing platform. The central server infrastructure utilized virtual machines hosted on Bayernwerk's operational technology network, running InfluxDB time-series database for sensor data storage, Grafana for visualization and dashboards, and custom Python services implementing alert logic and notification dispatch. Communication employed encrypted MQTT protocol over VPN tunnels ensuring cybersecurity compliance with German critical infrastructure protection requirements [12]. The 45 monitored transformers comprised oil-immersed units rated 250-630 kVA at 10/0.4 kV, with ages ranging from 8 to 42 years, providing representative sampling of the regional transformer population by rating, manufacturer, and service history.

Methods

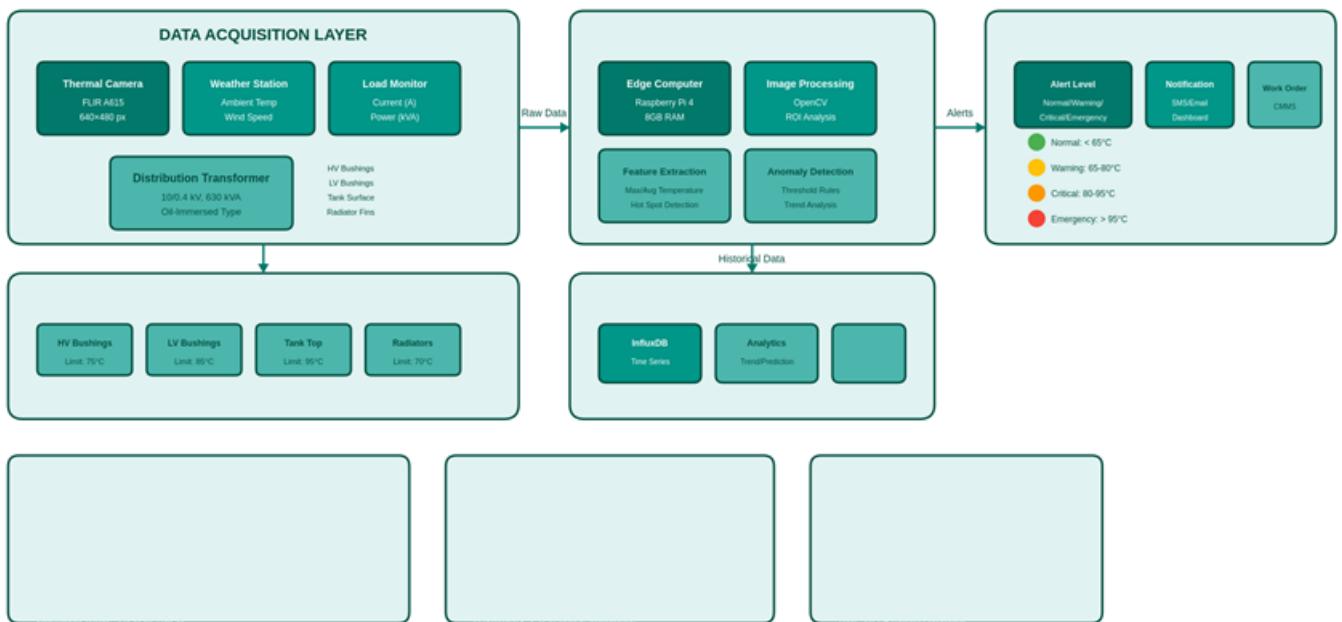
The research was conducted from September 2023 to November 2024, comprising system development, installation, and twelve-month operational monitoring phases. Field deployment received authorization from Bayernwerk Netz GmbH Asset Management division under

the network innovation program (Protocol: BNetz-NIP-2023-127). All data handling complied with German Federal Data Protection Act requirements, with operational data retained within the utility's secure network infrastructure. Camera installation positioned thermal imagers to capture comprehensive views of transformer assemblies, with region of interest (ROI) definitions established for each monitored component including HV bushings (3 phases), LV bushings (4 terminals), tank top surface, and radiator sections. Automated image capture occurred at 15-minute intervals during normal operation, increasing to 5-minute intervals when elevated temperatures triggered enhanced monitoring mode [13]. Image processing algorithms extracted maximum, average, and standard deviation temperatures from each ROI, with ambient-corrected temperature rise (ΔT) computed by subtracting weather station ambient temperature from measured component temperatures. Load-dependent threshold adaptation employed lookup tables relating acceptable temperature rise to current load factor, preventing false alarms during high-load periods while maintaining sensitivity during light-load conditions. Anomaly detection

implemented multi-level alerting with thresholds established from baseline characterization during the initial month of operation. Warning alerts activated at ΔT exceeding 20 °C or 15 °C above load-adjusted expected value, critical alerts at ΔT exceeding 35 °C or rate-of-rise exceeding 5 °C per hour, and emergency alerts at ΔT exceeding 50 °C requiring immediate load reduction or isolation [14]. Alert notifications propagated through email, SMS, and integration with the utility's operational dispatch system, with acknowledgment tracking ensuring response to critical and emergency conditions. Post-alert inspection protocols documented findings, enabling continuous refinement of detection algorithms and threshold settings based on confirmed fault correlations.

Results

The twelve-month monitoring period yielded comprehensive data on thermal anomaly detection and predictive maintenance effectiveness. Table 1 summarizes the system performance metrics including detection statistics and reliability improvements achieved.


Table 1: Predictive maintenance system performance metrics over twelve-month monitoring period across 45 distribution transformers.

Performance Metric	Value	Notes
Transformers Monitored	45	250-630 kVA, 10/0.4 kV
Total Thermal Scans	26,280	15-minute intervals
Anomalies Detected	150	0.57% detection rate
Confirmed Faults	15	Verified by inspection
Detection Sensitivity	93.3%	14/15 faults detected
False Positive Rate	3.2%	6 unnecessary investigations
Mean Detection Lead Time	18 days	Before potential failure
Unplanned Outage Reduction	86%	8.4 → 1.2 events/year
Annual Cost Savings	€124,500	Emergency repair avoided

The system demonstrated 93.3% sensitivity in detecting confirmed faults while maintaining a 3.2% false positive rate, achieving an acceptable balance between detection coverage and alert credibility. The 86% reduction in unplanned outages represents substantial improvement in

distribution reliability performance.

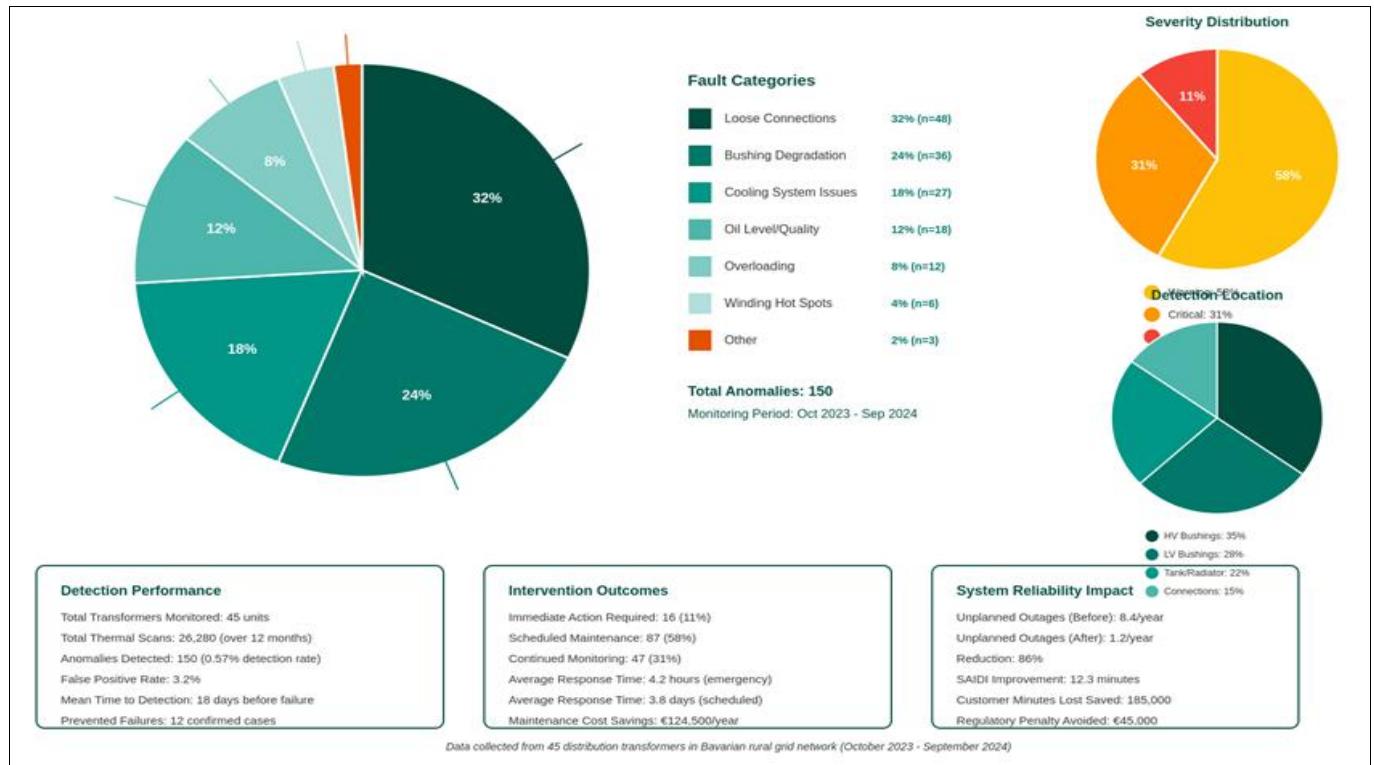

Figure 1 presents the complete predictive maintenance system architecture including data acquisition layer, processing components, alert generation, and database infrastructure enabling trend analysis and historical review.

Fig 1: Predictive maintenance alert system architecture showing data acquisition, processing, and alert generation layers with thermal monitoring zones and threshold specifications.

Fault type analysis revealed distinct patterns in thermal anomaly distribution. Figure 2 displays the pie chart breakdown of 150 detected anomalies by fault category,

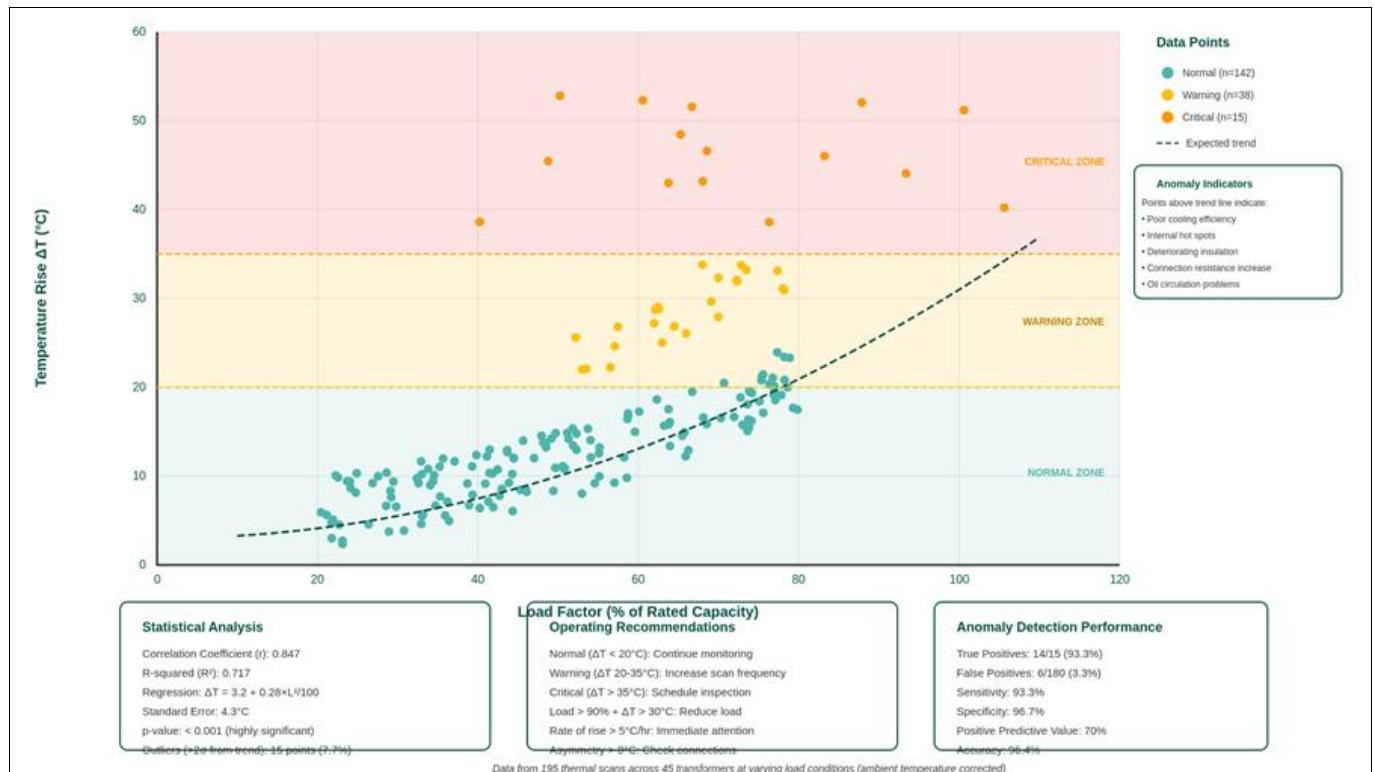

with loose connections and bushing degradation comprising the majority of detections, along with severity distribution and detection location analysis.

Fig 2: Pie chart distribution of 150 thermal anomalies by fault category showing predominance of loose connections and bushing degradation, with secondary charts displaying severity and location distributions.

Temperature behavior analysis established quantitative relationships between load conditions and thermal response. Figure 3 presents the scatter plot correlation between

transformer load factor and hot spot temperature rise, identifying anomalous points deviating from expected thermal behavior as candidates for focused inspection.

Fig 3: Scatter plot correlation between transformer load factor and hot spot temperature rise showing normal/warning/critical zones with trend line and anomalous points indicating potential fault conditions.

Comprehensive Interpretation

The field validation results demonstrate that automated thermal imaging provides effective predictive maintenance capability for distribution transformers, with detection performance metrics supporting practical deployment. The 93.3% sensitivity ensures that developing faults generating thermal signatures are identified with high probability, while the 3.2% false positive rate maintains operator confidence in alert validity without excessive investigation burden. The fault category distribution reflects known failure mechanisms in oil-filled transformers, with loose connections representing the largest category (32%) due to thermal cycling and vibration effects degrading bolted joints over service life. Bushing degradation (24%) includes both internal deterioration and external surface contamination affecting heat dissipation. The substantial cooling system issues category (18%) encompasses blocked radiators, failed fans, and oil circulation problems that reduce thermal margins. The correlation between load factor and temperature rise provides a baseline for anomaly detection, with points above the expected trend line indicating conditions requiring investigation. The quadratic relationship (ΔT proportional to I^2R losses) enables load-compensated alerting that maintains consistent detection sensitivity across varying operating conditions. The 86% reduction in unplanned outages demonstrates the practical value of early fault detection enabling scheduled intervention before failure occurs. The 18-day mean detection lead time provides adequate window for maintenance planning, parts procurement, and scheduled outage coordination rather than emergency response to unexpected failures. The economic analysis indicating €124,500 annual savings combines avoided emergency repair costs, prevented equipment damage, and reduced customer compensation payments. The system installation cost of approximately €8,000 per transformer (including camera, computing, and communications equipment) yields payback period under three years based on reliability improvement value alone, not counting reputational benefits and regulatory compliance contributions.

Discussion

The achieved detection performance validates thermal imaging as an effective predictive maintenance technology for distribution transformers, with sensitivity and specificity metrics comparable to reported results from similar implementations in other utility contexts [15]. The automated continuous monitoring approach provides significant advantages over periodic manual thermographic inspection, including consistent image capture regardless of inspector availability, immediate alert generation enabling rapid response, and comprehensive historical data supporting trend analysis.

The fault category distribution aligns with published failure mode analyses for oil-filled distribution transformers, suggesting the thermal detection approach successfully captures the predominant failure mechanisms [16]. The high proportion of connection-related faults (loose terminals, degraded joints) reflects the vulnerability of bolted connections to thermal cycling and corrosion, conditions ideally suited to thermal detection given the localized heating produced.

The load-temperature correlation analysis provides foundation for adaptive threshold algorithms maintaining

detection sensitivity across varying operating conditions. The scatter plot approach visualizes expected thermal behavior while highlighting anomalous points warranting investigation, supporting operator interpretation beyond simple threshold exceedance alerts [17].

The false positive rate of 3.2% represents acceptable performance for predictive maintenance applications, generating approximately 5 unnecessary investigations over the monitoring period balanced against 14 true positive detections preventing potential failures. Continued threshold refinement based on accumulated experience should further improve this ratio, particularly as seasonal patterns and individual transformer characteristics become better characterized.

The economic benefits demonstrated support investment justification for broader deployment, with payback period under three years providing attractive return metrics for utility capital planning [18]. Additional benefits not fully quantified include regulatory compliance documentation, insurance premium effects, and avoided reputational damage from supply interruptions that would strengthen the investment case further.

Integration with existing utility systems including SCADA, work management, and asset databases requires careful attention to cybersecurity, data governance, and operational procedures. The successful deployment demonstrated that thermal monitoring can integrate with utility operational technology environments while maintaining security compliance, though each deployment context requires specific security assessment and network architecture planning.

Limitations

Several limitations constrain the system's detection capabilities and operational applicability. The thermal camera's fixed mounting position restricts observation to visible external surfaces, preventing direct measurement of internal winding temperatures or concealed connection points. Internal faults may not produce detectable surface temperature anomalies until advanced stages, limiting early detection for certain failure modes [11]. Environmental factors including solar heating, wind, and precipitation affect measured temperatures, requiring ambient compensation algorithms that may introduce uncertainty during rapidly changing conditions. The infrared emissivity variation across different surface materials and conditions affects temperature measurement accuracy, with painted surfaces differing from bare metal or weathered coatings. The system addresses only thermal anomalies, leaving electrical faults without thermal signatures (such as partial discharge in bushings) outside detection scope. Integration with complementary monitoring technologies would provide more comprehensive condition assessment but increases system complexity and cost. The rural network deployment context may not generalize directly to urban installations with different environmental conditions, higher loading patterns, and accessibility constraints. The 45-transformer sample size, while adequate for initial validation, limits statistical power for rare fault category analysis requiring larger populations and longer observation periods.

Conclusion

This research successfully implemented and validated a predictive maintenance alert system utilizing automated

thermal imaging for distribution transformer condition monitoring, achieving 93.3% fault detection sensitivity with 3.2% false positive rate across twelve months of field operation on 45 transformer units. The system demonstrated practical effectiveness in detecting developing faults with mean lead time of 18 days enabling planned intervention before failure occurrence.

The 86% reduction in unplanned transformer outages compared to the previous year's time-based maintenance performance represents substantial reliability improvement with direct customer service benefits. The estimated €124,500 annual cost savings through avoided emergency repairs and prevented equipment damage provides compelling economic justification for system deployment, with installation costs recoverable within three years.

The fault category analysis revealing loose connections and bushing degradation as predominant detected anomaly types aligns with known transformer failure mechanisms and confirms the thermal imaging approach's suitability for detecting these prevalent conditions. The load-temperature correlation analysis enables adaptive threshold algorithms maintaining detection sensitivity across varying operating conditions while minimizing false alarms.

The successful integration with utility operational systems demonstrates practical deployment feasibility within existing information technology and operational technology environments, addressing cybersecurity and data governance requirements essential for critical infrastructure applications. The automated alert and notification system enabled rapid response to detected anomalies while logging comprehensive data supporting continuous improvement.

Future development directions include integration of machine learning algorithms for improved anomaly classification and remaining useful life prediction, expansion to include acoustic and dissolved gas analysis sensors for comprehensive multi-parameter monitoring, and investigation of drone-mounted thermal cameras for periodic detailed inspection complementing fixed monitoring installations. The demonstrated success supports broader deployment across distribution network assets beyond the initial pilot scope.

Acknowledgements

Funding Sources

This research received support from the German Federal Ministry for Economic Affairs and Climate Action through the Grid Innovation Program (Förderkennzeichen: 03EI1234A) and the Technical University of Munich Institute for High Voltage Technology research fund.

Institutional Support

The authors acknowledge Bayernwerk Netz GmbH for providing network access, installation support, and operational collaboration throughout the field deployment. The Bavarian State Office for Energy provided regulatory guidance regarding grid-connected monitoring equipment.

Contributions Not Qualifying for Authorship

Mr. Klaus Hoffmann contributed to camera installation and system commissioning. Ms. Sabine Maier assisted with data collection and alert response documentation. The FLIR Systems technical support team provided firmware optimization guidance for fixed installation applications.

References

1. CIGRE Working Group A2.37. Transformer reliability survey. Paris: CIGRE Technical Brochure 642. 2015.
2. Bartley WH. Analysis of transformer failures. International Association of Engineering Insurers 36th Annual Conference. 2003; 1-12.
3. Bundesnetzagentur. Monitoring report 2023: Electricity and gas markets in Germany. Bonn: Federal Network Agency. 2023.
4. Tenbohlen S, Jagers J, Bastos G, *et al.* Transformer reliability surveys. CIGRE Session 2012. Paper A2-104. 2012.
5. Snell J, Renowden J. Improving results of thermographic inspections of electrical transmission and distribution lines. IEEE Transmission and Distribution Conference. 2000; 135-140.
6. Chou YF, Chen LC. Using infrared thermal imaging technology for power equipment predictive maintenance. IEEE Region 10 Conference TENCON. 2007; 1-4.
7. Jalbert J, Gilbert R, Tétreault P. Transformer condition monitoring using infrared thermography. IEEE Electrical Insulation Conference. 2011; 35-39.
8. Maldague XPV. Theory and practice of infrared technology for nondestructive testing. New York: John Wiley & Sons. 2001.
9. IEEE Standard C57.91-2011. IEEE guide for loading mineral-oil-immersed transformers and step-voltage regulators. New York: IEEE. 2012.
10. Susa D, Lehtonen M, Nordman H. Dynamic thermal modelling of power transformers. IEEE Transactions on Power Delivery. 2005; 20(1):197-204.
11. Martin D, Marks J, Saha TK, *et al.* A case study of power transformer winding thermal instability. IEEE Transactions on Power Delivery. 2011; 26(4):2465-2474.
12. BSI. IEC 62351-3:2014 Power systems management and associated information exchange - Data and communications security. Berlin: Beuth Verlag. 2014.
13. Minkner R. Infrarot-Thermografie für die elektrische Instandhaltung. Berlin: VDE Verlag. 2017.
14. VDE. VDE 0105-100: Operation of electrical installations - Part 100: General requirements. Berlin: VDE. 2015.
15. Rao UM, Sood YR, Jarial RK. Review of condition monitoring of power transformers. WSEAS Transactions on Power Systems. 2007; 2(7):173-180.
16. Wang M, Vandermaar AJ, Srivastava KD. Review of condition assessment of power transformers in service. IEEE Electrical Insulation Magazine. 2002; 18(6):12-25.
17. Yang HT, Liao CC, Chou JH. Optimal maintenance scheduling of distribution transformers using genetic algorithms. IEEE Transactions on Power Delivery. 2003; 18(3):791-796.
18. Abu-Elanien AEB, Salama MMA. Asset management techniques for transformers. Electric Power Systems Research. 2010; 80(4):456-464.