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Abstract

Brushless DC motors powering small unmanned aerial vehicles face demanding operational conditions
that accelerate component degradation, with motor failure during flight presenting significant safety
and economic consequences. Early detection of developing faults enables preventive maintenance
scheduling and prevents catastrophic in-flight failures that could damage expensive airframes or create
hazards in populated areas. This research presents the development and validation of a lightweight
vibration-based fault detection system designed specifically for integration with small multi-rotor
UAVSs. The system employs dual MEMS accelerometers mounted at the motor base to capture three-
axis vibration signatures, with an STM32F411 microcontroller performing real-time frequency domain
analysis through 1024-point Fast Fourier Transform processing. Feature extraction algorithms compute
statistical parameters including RMS amplitude, peak frequency, crest factor, kurtosis, and spectral
entropy, feeding a decision tree classifier trained to distinguish healthy operation from three fault
categories: rotor imbalance, bearing wear, and propeller damage. Validation testing across twelve
2212-class BLDC motors operating under controlled fault conditions achieved overall classification
accuracy of 94.7%, with healthy motor identification reaching 97.1% accuracy. The system detected
imbalance faults at amplitudes 2.8 times normal vibration levels with 93.3% accuracy, while bearing
wear and propeller damage conditions were identified with 92.9% and 92.6% accuracy respectively.
Detection latency under 50 milliseconds enables real-time fault alerting during flight operations. Field
validation through 48 hours of accumulated flight testing across six UAV platforms demonstrated
reliable fault detection without false alarms during normal operations, with two genuine developing
faults successfully identified and confirmed through post-flight inspection. The complete sensor
module weighs 28 grams and consumes 180 milliwatts, representing acceptable payload and power
overhead for small UAV integration. The research provides UAV operators with a practical condition
monitoring solution enabling transition from time-based to condition-based maintenance strategies,
potentially reducing unscheduled maintenance events while improving operational safety through early
warning of developing motor problems before flight-critical failures occur.

Keywords: Vibration monitoring, fault detection, BLDC motor, UAV, condition monitoring, MEMS
accelerometer, FFT analysis, machine learning

Introduction

Motor failure remains the leading cause of multi-rotor UAV crashes, accounting for an
estimated 35% of incident investigations where root cause could be determined M. The
brushless DC motors powering these aircraft operate at extreme rotational speeds exceeding
10,000 RPM while enduring vibration, temperature cycling, and environmental
contamination that progressively degrade bearing surfaces, rotor balance, and winding
insulation. Unlike manned aircraft with redundant systems and trained pilots, small UAVs
depend entirely on each motor functioning within specifications, making early fault detection
essential for operational safety.

Vibration analysis has long served as the primary technique for rotating machinery condition
monitoring in industrial applications, with characteristic frequency signatures enabling
identification of specific fault mechanisms including bearing defects, rotor imbalance,
misalignment, and looseness @. The emergence of low-cost MEMS accelerometers and
capable microcontrollers creates opportunities for adapting these proven techniques to small
UAV applications where size, weight, and power constraints previously precluded
sophisticated monitoring systems [,
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Previous investigations of UAV motor health monitoring
have demonstrated feasibility of vibration-based approaches
but often employed laboratory instrumentation impractical
for flight integration or focused on post-flight analysis
rather than real-time detection [“. The operational
requirement for immediate fault alerting during flight,
combined with strict weight budgets typical of sub-2kg
UAV platforms, demands purpose-designed systems
optimized for the specific application context B,

This research develops a complete vibration-based fault
detection system optimized for small UAV integration, with
specific objectives including achieving detection accuracy
exceeding 90% across primary fault categories, maintaining
detection latency under 100 milliseconds for real-time
alerting capability, limiting total system mass below 30
grams to minimize payload impact, and validating
performance through extended flight testing rather than
bench evaluation alone. The research was conducted at
Sydney Institute of Technology Aerospace Laboratory from
June to November 2024, encompassing System
development, controlled fault testing, and field validation
phases.

Material and Methods

Material

The test motors comprised twelve SunnySky X2212-13
brushless DC motors rated at 920 KV (RPM per volt),
representing a common specification for 450-class
quadcopter platforms. Motors were paired with 9045 carbon
fiber propellers matching typical application configurations.
Each motor assembly mounted on a custom aluminum test
stand incorporating piezoelectric force sensors for thrust
measurement and rigid accelerometer mounting provisions
ensuring direct vibration transmission without damping. The
primary vibration sensor was an InvenSense MPU-6050 six-
axis MEMS inertial measurement unit featuring three-axis
accelerometer (+16g range, 16-bit resolution) and three-axis
gyroscope. A secondary Analog Devices ADXL345 three-
axis accelerometer (+16g range, 13-bit resolution) provided
measurement redundancy. Both sensors communicated via
I12C interface to the STM32F411 microcontroller (ARM
Cortex-M4, 100 MHz, 512 KB flash, 128 KB SRAM)
serving as the signal processing and classification platform.
Environmental monitoring employed a DS18B20 digital
temperature sensor and a Hall-effect tachometer providing
motor RPM reference. A 433 MHz telemetry radio enabled
data transmission to ground station equipment during flight
tests. Test fault conditions were induced systematically:
rotor imbalance through small mass additions (0.1-0.5 g) to
propeller blades, bearing degradation through controlled
contamination with fine silica particles, and propeller
damage through edge nicks and surface scoring replicating
impact damage. Control motors maintained factory
condition throughout testing. Power supply utilized a 3S
2200mAnh lithium polymer battery providing 11.1V nominal
voltage with electronic speed controller rated 30A
continuous. Flight test platforms comprised six DJI F450
quadcopter frames equipped with Pixhawk flight controllers
running ArduPilot firmware version 4.3.
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Methods

The research was conducted at Sydney Institute of
Technology Aerospace Laboratory and adjacent outdoor
flight testing facility from June to November 2024. The
research protocol received approval from the Sydney
Institute of Technology Engineering Research Ethics
Committee (Protocol: SIT-EREC-2024-031, approved July
2024). Flight testing complied with Civil Aviation Safety
Authority regulations for unmanned aircraft operations.
Controlled fault testing employed systematic fault induction
across the twelve test motors, with four motors maintained
as healthy controls and eight motors subjected to
progressive fault development. Each motor underwent 30
test runs at standardized throttle settings (25%, 50%, 75%)
with continuous vibration recording throughout 60-second
stabilized operation periods. This protocol yielded 360
individual test recordings divided into 120 samples per
condition category (healthy, imbalance, bearing, propeller).
Vibration signals were sampled at 10 kHz per axis for 10-
second windows, with FFT analysis applied to sequential
1024-sample segments yielding power spectral density
estimates. Feature extraction computed RMS amplitude,
peak frequency, crest factor, kurtosis, skewness, spectral
centroid, and spectral entropy from each analysis window.
The feature dataset was split 70/30 for classifier training and
validation with stratified sampling ensuring proportional
fault category representation. The decision tree classifier
was trained using scikit-learn with maximum depth limited
to 8 levels preventing overfitting while maintaining
interpretable decision rules 1. Model export to C code
enabled embedded deployment on the STM32 platform with
execution timing validation confirming real-time capability.
Flight validation accumulated 48 hours of operation across
diverse conditions including hover, forward flight, and
aggressive maneuvering, monitoring for false alarms during
healthy operation and genuine fault detection during
induced degradation sequences.

System Design

The fault detection system architecture comprises three
functional subsystems: vibration sensing, signal processing,
and fault classification. The sensing subsystem employs an
MPU-6050 inertial measurement unit as the primary
accelerometer, providing three-axis acceleration
measurement at +16g full scale with 16-bit resolution and
integrated digital filtering. A secondary ADXL345
accelerometer provides redundant measurement enabling
cross-validation and sensor fault detection 1. The signal
processing subsystem centers on an STM32F411
microcontroller running at 100 MHz, providing hardware
floating-point  support essential for efficient FFT
computation. Vibration signals are sampled at 10 kHz per
axis, accumulated into 1024-sample windows, and
transformed through optimized radix-2 FFT implementation
yielding 9.77 Hz frequency resolution across the 0-5 kHz
analysis band. Feature extraction computes seven statistical
parameters from both time and frequency domain
representations. The classification subsystem implements a
decision tree algorithm trained offline using controlled fault
data and deployed on the microcontroller for real-time
inference. MAVLink telemetry protocol integration enables
fault status transmission to the flight controller and ground
station, supporting automated protective responses including

return-to-home triggering when critical faults are detected
]
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Performance Evaluation

Classification performance was evaluated through ten-fold
cross-validation using the controlled fault dataset, with
accuracy, precision, recall, and F1-score computed for each
fault category. Confusion matrix analysis quantified
misclassification patterns between fault types sharing
similar vibration characteristics [®l. Detection latency
measurement employed high-speed logging to capture the
interval from fault onset to classification output, with
analysis confirming worst-case latency under 50
milliseconds including sensor sampling, FFT computation,
feature extraction, and decision tree inference. This
performance enables fault alerting within single rotor
revolutions at typical operating speeds. False alarm rate
assessment utilized extended healthy motor operation data

https://www.electricaltechjournal.com

collected across varied throttle settings and flight
maneuvers, computing the frequency of incorrect fault
indications that could trigger unnecessary protective actions.
The target false positive rate of below 5% balances
detection sensitivity against operational disruption from
false alarms. Receiver operating characteristic analysis
established optimal classification thresholds maximizing
detection probability while constraining false alarm rates
within acceptable bounds.

Results

The vibration-based fault detection system achieved high
classification accuracy across all tested motor conditions.
Table 1 presents the confusion matrix summarizing
classification performance from the validation dataset.

Table 1: Confusion matrix for vibration-based fault classification across four motor condition categories (validation dataset, n=120).

Actual \ Predicted Healthy Imbalance Bearing Propeller Accuracy
Healthy 34 1 0 0 97.1%
Imbalance 1 28 1 0 93.3%
Bearing Wear 0 1 26 1 92.9%
Propeller Damage 0 0 2 25 92.6%
Overall Accuracy 94.7%

Overall classification accuracy reached 94.7%, with healthy
motor identification achieving highest accuracy at 97.1%
and fault categories ranging from 92.6% to 93.3%. The
system demonstrated clear separation between healthy and
faulty conditions with only 2.9% false positive rate.

Figure 1 presents the complete system architecture
schematic illustrating the integration of vibration sensing,
signal processing, fault classification, and communication
subsystems designed for UAV integration.
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Fig 1: Vibration-based fault detection system schematic showing UAV motor assembly, sensing unit, signal processing, fault classification,
and flight controller interface integration.

Frequency domain analysis revealed distinct vibration
signatures associated with each fault category. Figure 2
displays the scatter plot of dominant frequency versus RMS

amplitude across all test samples, showing clear clustering
patterns  enabling visual and algorithmic  fault
discrimination.
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Fig 2: Scatter plot of dominant vibration frequency versus RMS amplitude showing distinct clustering patterns for healthy motors and three
fault categories with classification region boundaries.

Statistical analysis of RMS vibration amplitude provided motor conditions, demonstrating significant separation
quantitative basis for threshold-based detection. Figure 3 between healthy operation and all fault categories with no
presents box plots comparing amplitude distributions across overlap in interquartile ranges.
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Fig 3: Box plot comparison of RMS vibration amplitude distributions across motor condition categories showing statistical separation with
fault detection threshold and confidence intervals.

Comprehensive Interpretation operations, while fault detection rates exceeding 92% for all
The experimental results validate vibration monitoring as an categories provide high confidence that developing
effective approach for UAV motor fault detection, with problems will trigger appropriate warnings. The scatter plot
classification accuracy sufficient for practical deployment. analysis reveals the physical basis for classification success:
The 97.1% healthy motor identification rate ensures healthy motors cluster tightly in the low-amplitude region
minimal false alarm occurrence that could disrupt normal near the fundamental rotation frequency, while each fault
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type produces characteristic signature shifts. Imbalance
faults maintain frequency near the rotation rate but elevate
amplitude, bearing wear generates broadband high-
frequency components, and propeller damage produces
multi-harmonic patterns reflecting aerodynamic asymmetry.
The box plot comparison confirms statistically significant
amplitude differences between healthy and faulty
conditions, with the 1.5g threshold providing optimal
discrimination. The non-overlapping confidence intervals
support  confident classification without ambiguous
boundary cases that could complicate decision-making.
Flight validation results corroborated bench test findings,
with zero false alarms during 48 hours of normal operation
representing robust specificity under realistic operating
conditions including vibration from airframe resonances and
control input transients that could potentially confuse
simpler detection approaches.

Discussion

The 94.7% overall accuracy achieved compares favorably
with published results from laboratory investigations while
demonstrating maintained performance under flight
conditions introducing additional vibration sources and
environmental variability ™. The decision tree classifier's
interpretable  structure  enables  understanding  of
classification logic, with primary split points corresponding
to physically meaningful thresholds such as the 1.59 RMS
amplitude boundary separating healthy from faulty
operation.

The detection latency under 50 milliseconds enables fault
alerting within approximately five rotor revolutions at
typical operating speeds, providing adequate response time
for flight controller protective actions before fault
progression causes catastrophic failure 1. This real-time
capability distinguishes the system from post-flight analysis
approaches that identify problems only after landing,
potentially after fault-induced damage has already occurred.
The 28-gram system mass and 180mW power consumption
represent acceptable overhead for small UAV platforms,
adding approximately 2% to typical payload capacity and
0.5% to power budget (Y. Integration with MAVLink
telemetry protocol enables straightforward incorporation
with popular flight controller platforms without requiring
custom firmware modifications.

Limitations include the supervised learning approach
requiring labeled fault data for training, which may not
generalize perfectly to fault types not represented in the
training set. The current implementation addresses only
motor faults, leaving other failure modes including ESC
failures and propeller separation outside detection scope.
Environmental factors including rain exposure and extreme
temperatures were not systematically evaluated and may
affect sensor performance 12,

Conclusion

This research successfully developed and validated a
lightweight vibration-based fault detection system achieving
94.7% classification accuracy across healthy motor
operation and three primary fault categories relevant to
small UAV applications. The system's 28-gram mass and
real-time detection capability enable practical flight
integration previously impractical with conventional
vibration monitoring instrumentation.

The validation methodology encompassing controlled fault
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testing and extended flight evaluation provides confidence
that laboratory performance translates to operational
environments, with zero false alarms during 48 flight hours
demonstrating robust discrimination between normal
vibration signatures and genuine fault indicators. The two
confirmed fault detections during field testing validate the
system's practical utility for identifying developing
problems before flight-critical failures occur.

The feature extraction and classification approach provides
effective fault discrimination using computationally
efficient  algorithms  implementable on embedded
microcontrollers without specialized signal processing
hardware. The decision tree classifier's transparent decision
logic enables operator understanding of fault diagnosis
rationale, supporting informed maintenance decisions rather
than requiring blind trust in algorithmic outputs.

The research contributes to advancing UAV operational
safety by enabling transition from time-based maintenance
schedules, which may replace functional components
prematurely or allow degraded components to remain in
service, toward condition-based approaches informed by
actual component health status. This capability becomes
increasingly important as UAV applications expand into
contexts including infrastructure inspection, delivery
services, and emergency response where reliable operation
carries significant safety and economic consequences.
Future development directions include expanding fault
detection coverage to additional failure modes, investigating
transfer learning approaches enabling adaptation to different
motor types without complete retraining, and exploring
sensor fusion combining vibration with acoustic and current
monitoring for enhanced diagnostic capability. Integration
with automated maintenance management systems could
further reduce operator workload while ensuring consistent
condition monitoring across UAV fleets.
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