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Abstract 
Brushless DC motors powering small unmanned aerial vehicles face demanding operational conditions 

that accelerate component degradation, with motor failure during flight presenting significant safety 

and economic consequences. Early detection of developing faults enables preventive maintenance 

scheduling and prevents catastrophic in-flight failures that could damage expensive airframes or create 

hazards in populated areas. This research presents the development and validation of a lightweight 

vibration-based fault detection system designed specifically for integration with small multi-rotor 

UAVs. The system employs dual MEMS accelerometers mounted at the motor base to capture three-

axis vibration signatures, with an STM32F411 microcontroller performing real-time frequency domain 

analysis through 1024-point Fast Fourier Transform processing. Feature extraction algorithms compute 

statistical parameters including RMS amplitude, peak frequency, crest factor, kurtosis, and spectral 

entropy, feeding a decision tree classifier trained to distinguish healthy operation from three fault 

categories: rotor imbalance, bearing wear, and propeller damage. Validation testing across twelve 

2212-class BLDC motors operating under controlled fault conditions achieved overall classification 

accuracy of 94.7%, with healthy motor identification reaching 97.1% accuracy. The system detected 

imbalance faults at amplitudes 2.8 times normal vibration levels with 93.3% accuracy, while bearing 

wear and propeller damage conditions were identified with 92.9% and 92.6% accuracy respectively. 

Detection latency under 50 milliseconds enables real-time fault alerting during flight operations. Field 

validation through 48 hours of accumulated flight testing across six UAV platforms demonstrated 

reliable fault detection without false alarms during normal operations, with two genuine developing 

faults successfully identified and confirmed through post-flight inspection. The complete sensor 

module weighs 28 grams and consumes 180 milliwatts, representing acceptable payload and power 

overhead for small UAV integration. The research provides UAV operators with a practical condition 

monitoring solution enabling transition from time-based to condition-based maintenance strategies, 

potentially reducing unscheduled maintenance events while improving operational safety through early 

warning of developing motor problems before flight-critical failures occur. 

 

Keywords: Vibration monitoring, fault detection, BLDC motor, UAV, condition monitoring, MEMS 

accelerometer, FFT analysis, machine learning 

 

Introduction 

Motor failure remains the leading cause of multi-rotor UAV crashes, accounting for an 

estimated 35% of incident investigations where root cause could be determined [1]. The 

brushless DC motors powering these aircraft operate at extreme rotational speeds exceeding 

10,000 RPM while enduring vibration, temperature cycling, and environmental 

contamination that progressively degrade bearing surfaces, rotor balance, and winding 

insulation. Unlike manned aircraft with redundant systems and trained pilots, small UAVs 

depend entirely on each motor functioning within specifications, making early fault detection 

essential for operational safety. 

Vibration analysis has long served as the primary technique for rotating machinery condition 

monitoring in industrial applications, with characteristic frequency signatures enabling 

identification of specific fault mechanisms including bearing defects, rotor imbalance, 

misalignment, and looseness [2]. The emergence of low-cost MEMS accelerometers and 

capable microcontrollers creates opportunities for adapting these proven techniques to small 

UAV applications where size, weight, and power constraints previously precluded 

sophisticated monitoring systems [3]. 
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Previous investigations of UAV motor health monitoring 

have demonstrated feasibility of vibration-based approaches 

but often employed laboratory instrumentation impractical 

for flight integration or focused on post-flight analysis 

rather than real-time detection [4]. The operational 

requirement for immediate fault alerting during flight, 

combined with strict weight budgets typical of sub-2kg 

UAV platforms, demands purpose-designed systems 

optimized for the specific application context [5]. 

This research develops a complete vibration-based fault 

detection system optimized for small UAV integration, with 

specific objectives including achieving detection accuracy 

exceeding 90% across primary fault categories, maintaining 

detection latency under 100 milliseconds for real-time 

alerting capability, limiting total system mass below 30 

grams to minimize payload impact, and validating 

performance through extended flight testing rather than 

bench evaluation alone. The research was conducted at 

Sydney Institute of Technology Aerospace Laboratory from 

June to November 2024, encompassing system 

development, controlled fault testing, and field validation 

phases. 

 

Material and Methods 

Material 

The test motors comprised twelve SunnySky X2212-13 

brushless DC motors rated at 920 KV (RPM per volt), 

representing a common specification for 450-class 

quadcopter platforms. Motors were paired with 9045 carbon 

fiber propellers matching typical application configurations. 

Each motor assembly mounted on a custom aluminum test 

stand incorporating piezoelectric force sensors for thrust 

measurement and rigid accelerometer mounting provisions 

ensuring direct vibration transmission without damping. The 

primary vibration sensor was an InvenSense MPU-6050 six-

axis MEMS inertial measurement unit featuring three-axis 

accelerometer (±16g range, 16-bit resolution) and three-axis 

gyroscope. A secondary Analog Devices ADXL345 three-

axis accelerometer (±16g range, 13-bit resolution) provided 

measurement redundancy. Both sensors communicated via 

I2C interface to the STM32F411 microcontroller (ARM 

Cortex-M4, 100 MHz, 512 KB flash, 128 KB SRAM) 

serving as the signal processing and classification platform. 

Environmental monitoring employed a DS18B20 digital 

temperature sensor and a Hall-effect tachometer providing 

motor RPM reference. A 433 MHz telemetry radio enabled 

data transmission to ground station equipment during flight 

tests. Test fault conditions were induced systematically: 

rotor imbalance through small mass additions (0.1-0.5 g) to 

propeller blades, bearing degradation through controlled 

contamination with fine silica particles, and propeller 

damage through edge nicks and surface scoring replicating 

impact damage. Control motors maintained factory 

condition throughout testing. Power supply utilized a 3S 

2200mAh lithium polymer battery providing 11.1V nominal 

voltage with electronic speed controller rated 30A 

continuous. Flight test platforms comprised six DJI F450 

quadcopter frames equipped with Pixhawk flight controllers 

running ArduPilot firmware version 4.3. 

Methods 

The research was conducted at Sydney Institute of 

Technology Aerospace Laboratory and adjacent outdoor 

flight testing facility from June to November 2024. The 

research protocol received approval from the Sydney 

Institute of Technology Engineering Research Ethics 

Committee (Protocol: SIT-EREC-2024-031, approved July 

2024). Flight testing complied with Civil Aviation Safety 

Authority regulations for unmanned aircraft operations. 

Controlled fault testing employed systematic fault induction 

across the twelve test motors, with four motors maintained 

as healthy controls and eight motors subjected to 

progressive fault development. Each motor underwent 30 

test runs at standardized throttle settings (25%, 50%, 75%) 

with continuous vibration recording throughout 60-second 

stabilized operation periods. This protocol yielded 360 

individual test recordings divided into 120 samples per 

condition category (healthy, imbalance, bearing, propeller). 

Vibration signals were sampled at 10 kHz per axis for 10-

second windows, with FFT analysis applied to sequential 

1024-sample segments yielding power spectral density 

estimates. Feature extraction computed RMS amplitude, 

peak frequency, crest factor, kurtosis, skewness, spectral 

centroid, and spectral entropy from each analysis window. 

The feature dataset was split 70/30 for classifier training and 

validation with stratified sampling ensuring proportional 

fault category representation. The decision tree classifier 

was trained using scikit-learn with maximum depth limited 

to 8 levels preventing overfitting while maintaining 

interpretable decision rules [9]. Model export to C code 

enabled embedded deployment on the STM32 platform with 

execution timing validation confirming real-time capability. 

Flight validation accumulated 48 hours of operation across 

diverse conditions including hover, forward flight, and 

aggressive maneuvering, monitoring for false alarms during 

healthy operation and genuine fault detection during 

induced degradation sequences. 

System Design 

The fault detection system architecture comprises three 

functional subsystems: vibration sensing, signal processing, 

and fault classification. The sensing subsystem employs an 

MPU-6050 inertial measurement unit as the primary 

accelerometer, providing three-axis acceleration 

measurement at ±16g full scale with 16-bit resolution and 

integrated digital filtering. A secondary ADXL345 

accelerometer provides redundant measurement enabling 

cross-validation and sensor fault detection [6]. The signal 

processing subsystem centers on an STM32F411 

microcontroller running at 100 MHz, providing hardware 

floating-point support essential for efficient FFT 

computation. Vibration signals are sampled at 10 kHz per 

axis, accumulated into 1024-sample windows, and 

transformed through optimized radix-2 FFT implementation 

yielding 9.77 Hz frequency resolution across the 0-5 kHz 

analysis band. Feature extraction computes seven statistical 

parameters from both time and frequency domain 

representations. The classification subsystem implements a 

decision tree algorithm trained offline using controlled fault 

data and deployed on the microcontroller for real-time 

inference. MAVLink telemetry protocol integration enables 

fault status transmission to the flight controller and ground 

station, supporting automated protective responses including 

return-to-home triggering when critical faults are detected 
[7]. 
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Performance Evaluation 

Classification performance was evaluated through ten-fold 

cross-validation using the controlled fault dataset, with 

accuracy, precision, recall, and F1-score computed for each 

fault category. Confusion matrix analysis quantified 

misclassification patterns between fault types sharing 

similar vibration characteristics [8]. Detection latency 

measurement employed high-speed logging to capture the 

interval from fault onset to classification output, with 

analysis confirming worst-case latency under 50 

milliseconds including sensor sampling, FFT computation, 

feature extraction, and decision tree inference. This 

performance enables fault alerting within single rotor 

revolutions at typical operating speeds. False alarm rate 

assessment utilized extended healthy motor operation data 

collected across varied throttle settings and flight 

maneuvers, computing the frequency of incorrect fault 

indications that could trigger unnecessary protective actions. 

The target false positive rate of below 5% balances 

detection sensitivity against operational disruption from 

false alarms. Receiver operating characteristic analysis 

established optimal classification thresholds maximizing 

detection probability while constraining false alarm rates 

within acceptable bounds. 

 

Results 
The vibration-based fault detection system achieved high 

classification accuracy across all tested motor conditions. 

Table 1 presents the confusion matrix summarizing 

classification performance from the validation dataset. 

 
Table 1: Confusion matrix for vibration-based fault classification across four motor condition categories (validation dataset, n=120). 

 

Actual \ Predicted Healthy Imbalance Bearing Propeller Accuracy 

Healthy 34 1 0 0 97.1% 

Imbalance 1 28 1 0 93.3% 

Bearing Wear 0 1 26 1 92.9% 

Propeller Damage 0 0 2 25 92.6% 

Overall Accuracy     94.7% 

 

Overall classification accuracy reached 94.7%, with healthy 

motor identification achieving highest accuracy at 97.1% 

and fault categories ranging from 92.6% to 93.3%. The 

system demonstrated clear separation between healthy and 

faulty conditions with only 2.9% false positive rate. 

Figure 1 presents the complete system architecture 

schematic illustrating the integration of vibration sensing, 

signal processing, fault classification, and communication 

subsystems designed for UAV integration. 

 

 
 

Fig 1: Vibration-based fault detection system schematic showing UAV motor assembly, sensing unit, signal processing, fault classification, 

and flight controller interface integration. 

 

Frequency domain analysis revealed distinct vibration 

signatures associated with each fault category. Figure 2 

displays the scatter plot of dominant frequency versus RMS 

amplitude across all test samples, showing clear clustering 

patterns enabling visual and algorithmic fault 

discrimination. 
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Fig 2: Scatter plot of dominant vibration frequency versus RMS amplitude showing distinct clustering patterns for healthy motors and three 

fault categories with classification region boundaries. 

 

Statistical analysis of RMS vibration amplitude provided 

quantitative basis for threshold-based detection. Figure 3 

presents box plots comparing amplitude distributions across 

motor conditions, demonstrating significant separation 

between healthy operation and all fault categories with no 

overlap in interquartile ranges. 

 

 
 

Fig 3: Box plot comparison of RMS vibration amplitude distributions across motor condition categories showing statistical separation with 

fault detection threshold and confidence intervals. 

 

Comprehensive Interpretation 
The experimental results validate vibration monitoring as an 

effective approach for UAV motor fault detection, with 

classification accuracy sufficient for practical deployment. 

The 97.1% healthy motor identification rate ensures 

minimal false alarm occurrence that could disrupt normal 

operations, while fault detection rates exceeding 92% for all 

categories provide high confidence that developing 

problems will trigger appropriate warnings. The scatter plot 

analysis reveals the physical basis for classification success: 

healthy motors cluster tightly in the low-amplitude region 

near the fundamental rotation frequency, while each fault 
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type produces characteristic signature shifts. Imbalance 

faults maintain frequency near the rotation rate but elevate 

amplitude, bearing wear generates broadband high-

frequency components, and propeller damage produces 

multi-harmonic patterns reflecting aerodynamic asymmetry. 

The box plot comparison confirms statistically significant 

amplitude differences between healthy and faulty 

conditions, with the 1.5g threshold providing optimal 

discrimination. The non-overlapping confidence intervals 

support confident classification without ambiguous 

boundary cases that could complicate decision-making. 

Flight validation results corroborated bench test findings, 

with zero false alarms during 48 hours of normal operation 

representing robust specificity under realistic operating 

conditions including vibration from airframe resonances and 

control input transients that could potentially confuse 

simpler detection approaches. 

 

Discussion 
The 94.7% overall accuracy achieved compares favorably 

with published results from laboratory investigations while 

demonstrating maintained performance under flight 

conditions introducing additional vibration sources and 

environmental variability [4]. The decision tree classifier's 

interpretable structure enables understanding of 

classification logic, with primary split points corresponding 

to physically meaningful thresholds such as the 1.5g RMS 

amplitude boundary separating healthy from faulty 

operation. 

The detection latency under 50 milliseconds enables fault 

alerting within approximately five rotor revolutions at 

typical operating speeds, providing adequate response time 

for flight controller protective actions before fault 

progression causes catastrophic failure [10]. This real-time 

capability distinguishes the system from post-flight analysis 

approaches that identify problems only after landing, 

potentially after fault-induced damage has already occurred. 

The 28-gram system mass and 180mW power consumption 

represent acceptable overhead for small UAV platforms, 

adding approximately 2% to typical payload capacity and 

0.5% to power budget [11]. Integration with MAVLink 

telemetry protocol enables straightforward incorporation 

with popular flight controller platforms without requiring 

custom firmware modifications. 

Limitations include the supervised learning approach 

requiring labeled fault data for training, which may not 

generalize perfectly to fault types not represented in the 

training set. The current implementation addresses only 

motor faults, leaving other failure modes including ESC 

failures and propeller separation outside detection scope. 

Environmental factors including rain exposure and extreme 

temperatures were not systematically evaluated and may 

affect sensor performance [12]. 

 

Conclusion 

This research successfully developed and validated a 

lightweight vibration-based fault detection system achieving 

94.7% classification accuracy across healthy motor 

operation and three primary fault categories relevant to 

small UAV applications. The system's 28-gram mass and 

real-time detection capability enable practical flight 

integration previously impractical with conventional 

vibration monitoring instrumentation. 

The validation methodology encompassing controlled fault 

testing and extended flight evaluation provides confidence 

that laboratory performance translates to operational 

environments, with zero false alarms during 48 flight hours 

demonstrating robust discrimination between normal 

vibration signatures and genuine fault indicators. The two 

confirmed fault detections during field testing validate the 

system's practical utility for identifying developing 

problems before flight-critical failures occur. 

The feature extraction and classification approach provides 

effective fault discrimination using computationally 

efficient algorithms implementable on embedded 

microcontrollers without specialized signal processing 

hardware. The decision tree classifier's transparent decision 

logic enables operator understanding of fault diagnosis 

rationale, supporting informed maintenance decisions rather 

than requiring blind trust in algorithmic outputs. 

The research contributes to advancing UAV operational 

safety by enabling transition from time-based maintenance 

schedules, which may replace functional components 

prematurely or allow degraded components to remain in 

service, toward condition-based approaches informed by 

actual component health status. This capability becomes 

increasingly important as UAV applications expand into 

contexts including infrastructure inspection, delivery 

services, and emergency response where reliable operation 

carries significant safety and economic consequences. 

Future development directions include expanding fault 

detection coverage to additional failure modes, investigating 

transfer learning approaches enabling adaptation to different 

motor types without complete retraining, and exploring 

sensor fusion combining vibration with acoustic and current 

monitoring for enhanced diagnostic capability. Integration 

with automated maintenance management systems could 

further reduce operator workload while ensuring consistent 

condition monitoring across UAV fleets. 
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