

International Journal of Research in Advanced Electronics Engineering

E-ISSN: 2708-4566
P-ISSN: 2708-4558
Impact Factor (RJIF): 5.62
IJRAEE 2026; 7(1): 14-20
© 2026 IJRAEE
www.electrojournal.com
Received: 14-11-2025
Accepted: 19-12-2025

**Moawia Ibrahim Ahmed
Hamed**
B.Sc. Department of Electrical
& Electronic Engineering,
Omdurman Islamic
University, Omdurman,
Sudan, (MBA), University of
East London, London, United
Kingdom

Advanced optimization of demand response strategies via smart energy metering infrastructure for sustainable power systems

Moawia Ibrahim Ahmed Hamed

DOI: <https://www.doi.org/10.22271/27084558.2026.v7.i1a.71>

Abstract

Demand Response (DR) is used to improve the grid flexibility, peak reduction, accommodate variable renewable energy (VRE), and minimization of the costs involved in the operation of the system through alteration of the electricity demand in response to changes in price or system reliability. The smart metres and other features, such as Meter Data Management Systems (MDMS), advanced Metering Infrastructure (AMI), and secure communications, allow automated DR services to be offered through data. The literature review is concentrated on the changes since 2015 and offers a Hybrid Optimization Framework (HOF) aimed at enhancing the performance of DR without damaging user experience, the safety of devices, or the privacy of data. The HOF uses high-resolution AMI, machine learning, and multi-objective optimization with sub-hourly sensing, two-way control, and edge/cloud analytics of Day-Ahead load and VRE forecasting, customer segmentation, and Non-Intrusive Load Monitoring (NILM). It is a risk-sensitive two-step optimization engine that integrates Stochastic Mixed-Integer Linear Programming with real-time Model Predictive Control. Predictive elasticity models are based on the economic signals and the user behaviour. The 24-h simulation of residential aggregations reveals that the HOF is capable of continually decreasing the peak load by 15 to 25 percent and making considerable cost savings. It also considers such practical issues as the reliability of communication, cybersecurity, compliance with regulations, and equitable access. On balance, the HOF provides a versatile, powerful methodology of DR modernization in smart grids, incorporating innovative analytics, control systems, and incentive-based methods.

Keywords: Demand response, smart meters, advanced metering infrastructure (AMI), optimization, machine learning, stochastic programming, load forecasting, dynamic pricing, grid flexibility, NILM, model predictive control (MPC)

Introduction

Introduction and Foundations

The world electric power system is in a significant shift from a centralized and predictable generation model to a distributed and data-driven Smart Grid (SG). This change has been propelled by a faster pace of decarbonization, rising electricity demand through electrification, and especially Electric Vehicles (EVs) and high-efficiency heat pumps, as well as the increased role of intermittent Variable Renewable Energy (VRE) sources like solar PV and wind (Shariatzadeh 2015) [7]. Such changes pose substantial operational problems, such as an increase in variability, uncertainty in supply-demand, and dislocation of the traditional dispatchable capacity. To overcome these challenges, they need flexible resources that are dependable, quick, and cost-effective.

Conventional flexibility options, such as gas turbines, which ramp quickly, pumped hydro, and utility-scale batteries, are still significant. Nonetheless, the demand side has been vastly researched as the most cost-efficient and under-utilised flexibility reservoir. Demand Response (DR), as a deliberate alteration of consumer electricity consumption in reaction to economic or reliability indicators (Alireza Ghasempour 2016) [1], is not new, but in the past lacked significant effect because of manual intervention, poor measurement abilities, and low participation rates. The technological change of the extensive application of Smart Energy Metering Infrastructure (AMI) makes it possible to implement automated, accurate, and scalable DR. The present paper summarizes the main literature published since 2015 and

Correspondence
**Moawia Ibrahim Ahmed
Hamed**
B.Sc. Department of Electrical
& Electronic Engineering,
Omdurman Islamic
University, Omdurman,
Sudan, (MBA), University of
East London, London, United
Kingdom

suggests a Hybrid Optimization Framework (HOF) that can be used to improve the effectiveness of DR using high-resolution metering and sophisticated analytics.

Demand Response and Advanced Metering Infrastructure: DR schemes have typically been categorized into two. Price-Based DR (PDR) encourages voluntary load shifting using tariffs that include Time-of-Use (TOU), Real-Time Pricing (RTP), and Critical Peak Pricing (CPP). Direct compensation of controlled load curtailment is provided by the Incentive-Based DR (IDR) and such programmes as Direct Load Control (DLC) and industrial interruption programmes (Mohseni *et al.* 2019) [6]. The goals of these programmes are as varied as peak shaving and congestion management, or even fast-response ancillary services, the latter of which can only respond within sub-minutes, which can only be done with an automated two-way communication.

AMI is the key facilitator of such automation. It includes smart meters with high-frequency metering, secure and low-latency metering networks- such as cellular, fiber optics, RF mesh and Power Line Carrier (PLC) - and a central Meter Data Management System (MDMS) to store, validate and aggregate large amounts of data. More importantly, AMI helps in Automated DR (ADR), whereby the control commands directly go to Home Energy Management Systems (HEMS), Building Energy Management Systems (BEMS), as well as to smart appliances. This automation takes away human operator intervention to provide the reliability and predictability needed to make DR a fully dispatchable grid resource.

Critical Literature Review: AMI-Enabled DR Insights

According to recent literature since 2015, Advanced Metering Infrastructure (AMI) is the technology that forms the basis of high-performance Demand Response (DR). As AMI offers a new form of continuous, granular, and verifiable consumption data, the study has made a transition to state-of-the-art analytics, automated control, and multi-layer optimization.

Measurement, Verification, and Market Integration
Measurement AMI: One of the key contributions of AMI is the fact that it provides high-resolution data to provide an accurate Measurement and Verification (M&V), a long-time problem that has been tackling the Customer Baseline Load (CBL). Consistent baselines can guarantee equitable payments in incentive-based DR schemes and minimize conflicts in the settlement procedures (IEA 2021) [3]. The AMI data accuracy is also a limitation to gaming, as well as giving the operators more confidence in the performance of DR.

The ability of AMI to measure and settle in less than an hour is also paramount to the assimilation of distributed DR resources in wholesale markets. Contemporary energy and ancillary service markets commonly run on a 5- or 15-minute basis. With no AMI, small residential aggregations are not capable of verification, which limits them to peak-shaving programmes, and they are not able to participate in more valuable services (World Bank 2024) [10].

Machine Learning Load Profiling and Predictive Segmentation: The rich data streams are enabled by AMI and can be leveraged to perform more advanced predictive

analytics than conventional load forecasting. The consumption data in high frequency is used to feed the unsupervised machine learning models, including k-means, density-based clustering, and Hidden Markov Models, to produce the fine-grained customer segmentation (Wang *et al.* 2018) [9]. Through these segments, utilities are able to develop specific DR plans and not homogeneous programmes.

When groups with high flexibility and high DR value are identified, this is done by identifying customers with a certain pattern (sharp evening peaks or high thermostatically controlled load (TCL) use). Each category can then be equipped with custom incentives, thus enhancing the responsiveness and efficiency of the programme. The outputs of these segmentations give crucial parameters to optimization schemes such as flexible load potential and likelihood of sustained response (Singh *et al.* 2024) [8].

Data Quality, Data Security, and Privacy Problems

The granularity and huge volume of AMI data raise significant privacy and security issues. Non-Intrusive Load Monitoring (NILM) may be applied to high-frequency meters to construct inferences about sensitive household data, such as the occupancy pattern and the appliance usage habit (Mauzerall *et al.* 2025) [5]. These dangers necessitate robust regulatory, technical, and ethical protective measures. Recent studies, hence, highlight privacy-preserving means. Differential Privacy (DP) applies controlled noise in the process of reporting to ensure no individual is identified, but still offers an analytical value. Federated Learning (FL) provides a more effective solution as it allows training a machine learner using distributed training on customer devices without transmitting raw meter data. Aggregated model updates are the only ones that are exchanged with a central server, and sensitive consumption profiles are kept locally (Javed *et al.* 2023) [4]. FL is becoming a viable route towards the scale of advanced analytics to millions of AMI-enabled customers.

Research Gap and Theoretical Framework

Theoretical Underpinnings: Two related theoretical foundations make up the optimization of the Demand Response (DR). The first one is the microeconomic theory, especially the elasticity of demand and consumer utility. DR performance relies on the proper modelling of the balance between financial incentives and non-monetary utility variables that are comfort, convenience, and safety. Practically, such a trade-off is described in terms of such a metric as the User Discomfort Index (UDI), which is used to penalize the deviation of the preferred comfort settings when optimizing (Mohseni *et al.* 2019) [6].

The second field is the control and optimization theory, the mathematical programming techniques, convex optimization, and Model Predictive Control (MPC), are used to schedule controllable loads, such as thermostatically controlled loads (TCLs) and electric vehicles (EVs). Such optimization techniques should meet personal comfort constraints based on the consumer utility function as they seek system-level objectives such as peak reduction or minimization of costs. Its major problem is the realization of high system benefit without breaking the customer discomfort limits, which is directly related to the long-run participation and the viability of the DR programme.

Research Gap and Objectives

Even though the data foundation of advanced DR programmes is based on AMI, there is a significant research gap in terms of incorporating fast, adaptive optimization models that are reliable with large-scale operation under uncertainty. Deterministic optimization is not resilient to errors in renewable generation and load forecasting. On the other hand, completely adaptive methods, including unconstrained reinforcement learning, are not necessarily guaranteed to be safe and can lead to grid or thermal instability. Multi-stage stochastic full optimization is also accurate but computationally infeasible in the coordination of millions of devices.

To overcome such a challenge, this paper is aimed at achieving four objectives:

- To critically assess the current machine learning methods and optimization techniques (after 2015) to schedule the DR using high-resolution AMI data and, in particular, the trade-offs between scalability and robustness.
- To create a Hybrid Optimization Framework (HOF) to integrate Day-Ahead Stochastic Programming and Real Time Adaptive Control MPC to find a compromise between optimality, tractability, and adaptability to forecasting errors.
- To quantitatively test the proposed HOF by simulating residential load aggregation and testing Peak Reduction Efficiency (PRE).
- To examine the greater non-technical limitations which privacy, equity, and regulatory barriers, and the ethical and practical implementation of large-scale AMI-enabled DR systems.

Advanced Optimization Techniques and the Hybrid Framework

Optimization Techniques for DR Enabled by Smart Meter Data: The nature of Demand Response (DR) optimization is complex since it has to work with large and heterogeneous groups of devices and also consider the uncertainty in demand, price, and renewable generation. AMI supports these advanced optimization methods by providing the granular, high-resolution data, including short-term predictions, state-of-charge (SoC), and real-time price information needed to support these methods.

Deterministic and Stochastic Mathematical Programming: Most Day-Ahead DR scheduling strategies are based on Deterministic Mathematical Programming, which is commonly modelled as a Linear Programming (LP) or Mixed-Integer Linear Programming (MILP). The models are also very interpretable and have mathematically optimal schedules when predictions and model assumptions are true. But their primary shortcoming is the fact that they are sensitive to real-world variability. Even a change in the generation of VRE or a sharp increase in demand can readily undermine the deterministic optimal schedule (Wang *et al.* 2018) [9]. To deal with this, Stochastic Optimization (SO) brings uncertainty to the planning model by adding scenario trees or probability-weighted historical forecast errors. SO can generate schedules that are more resilient to adverse conditions by optimizing over a collection of

uncertainty scenarios, which are collectively known as axiomatic of the set of uncertainty scenarios, which can be denoted as: $(\$K)(xi k)$ (Mohseni *et al.* 2019) [6]. Robust Optimization (RO), conversely, aims at desired feasibility; to achieve this, solutions are constructed that are valid throughout all realizations of a specified uncertainty set. This is based on the fact that this method favours reliability rather than absolute economic optimality, thus appropriate in risk-averse grid settings.

Machine Learning for Forecasting and Predictive Decision Inputs:

Short-term load and VRE forecasting need high accuracy, which is vital to successful DR, and modern systems based on AMI rely more and more on machine learning (ML) models. The Deep Learning algorithms, particularly Long Short-Term Memory (LSTM) networks, have been found to perform better in forecasts compared to classical statistical models (Wang *et al.* 2018) [9].

Two additional tasks, which are also optimization-critical, are based on ML:

Elasticity: Customer Response Modelling

The data of the DR event in the past is used to model the probability of a customer responding to different incentive levels. Such predictions assist the aggregators in formulating cost-effective incentive systems and remain reliable.

State Estimation via NILM

In the case of flexible, but not metered, assets (e.g., legacy HVAC units), Non-Intrusive Load Monitoring (NILM) algorithms can be used to deduce appliance behavior based on complete-premise AMI data. These state estimates represent a major real-time constraint of Model Predictive Control (MPC) to keep operations safe and comfortable even in the presence of incomplete telemetry of the devices.

Adaptive Control Reinforcement Learning (RL)

Reinforcement Learning (RL) is another method to avoid explicit optimization that treats DR as a successive decision-making process. A control policy (when to pre-cool a home or set EV charging) is learned by an RL agent to ensure minimization of cost in a dynamic and potentially non-linear environment (Javed *et al.* 2023) [4]. The RL was especially successful in the modelling of the complicated thermal dynamics of TCLs or battery ageing processes, which are otherwise difficult to compute using traditional mathematical programming.

Nevertheless, the major problem with the usage of vanilla RL in grid Systems is the lack of formal safety guarantees. A purely economic benefit optimizing RL agent can promote thermal comfort limits, appliance restrictions, or even local grid stability limits. This drawback has triggered studies on Safety-Constrained Reinforcement Learning (SCRL) that will combine concepts of classical control theory with the RL framework, such that a system can never reach a critical limit that will result in a constraint violation. The trade-offs among the leading optimization strategies used in AMI-enabled DR underscore the necessity of a hybrid approach:

Table 1: Leading optimization strategies used in AMI-enabled DR

Optimization Strategy	Key Advantage	Disadvantage / Limitation	Data Dependency	Target Application
S-MILP	Provides guaranteed optimality; robust to forecast uncertainty.	High computational complexity, poor scalability beyond thousands of devices.	AMI-driven forecasts (price, VRE, load), device parameters, scenario probabilities.	Day-Ahead Scheduling (Aggregator Level)
Fast Convex / MPC	Fast computation, real-time control capability; computationally tractable.	Relies on simplified convex models; requires high-speed telemetry ($\Delta t \leq 15$ min).	Real-time telemetry, short-horizon forecasts (5-15 min).	Real-Time Control & Safety Enforcement (Edge Level)
Reinforcement Learning (RL)	Highly adaptive to non-linear dynamics; learns from experience; handles non-convexity.	Data-hungry; lacks inherent safety guarantees (requires SCRL); difficult to interpret.	Large historical datasets for training, real-time state feedback.	Adaptive Control Policy Generation for HEMS (Edge Level)
Metaheuristics (GA, PSO)	Can solve large-scale combinatorial problems where MILP is infeasible.	No guarantee of optimality; solution quality depends on heuristics; slow for real-time use.	Device constraints, discrete decision variables.	Long-term investment planning, discrete resource assignment

The Proposed Hybrid Optimization Framework (HOF)

The Hybrid Optimization Framework (HOF) is advanced as a fully functioning solution to the scalability-robustness trade-off in current demand response. It divides the complicated planning problem strategically into two time-horizon stages, which are handled by different layers of computations. This architecture is optimized to be deployed in utility scale, fulfilling the goals of providing Day-Ahead compliance and hedging versus uncertainty and the need to execute safely and in real-time.

Architectural Components and Flow of HOF

The HOF is structured into a two-layer structure. The utility or aggregator runs the centralized Cloud Layer, which deals with complex non-real-time planning and the decentralized Edge Layer, which is implemented at the HEMS/AMI of the customer and performs fast, safe, real-time control.

The Cloud Layer, which is the planning center, receives high-volume streams of both historical and real-time AMI information, variable renewable energy (VRE) forecasts, and price information. Non-real-time analytics, such as load projections using LSTM or Gradient Boosted Models (GBM), customer segmentation via clustering, and the fundamental Day-Ahead Stochastic Mixed-Integer Linear Programming (S-MILP), are done by this layer. The S-MILP is an optimization of an hourly hedged control path through the whole aggregation (Javed *et al.*, 2023) [4].

The Edge Layer is the implementation and safety core that gets supplied with the Day-Ahead target schedules and the existing price signals. It executes the Real-Time Adaptive Control (RAC) module that is normally a high-speed Model Predictive Control (MPC) solver. The local solver constantly modulates commands depending on telemetry (i.e., internal temperature, battery state-of-charge (SOC), and so on) so that control targets follow the Day-Ahead targets and the comfort and safety targets are followed precisely. In the case of complex or nonlinear dynamics, the fast, rule-of-thumb reinforcement learning policies could be used in lightweight devices, alleviating the computational burden associated with repeated calls to the MPC.

Two-Stage Mathematical Formulation

The beauty of the HOF is that the stochastic planning problem is complex and large-scale, and is decoupled from the fast and local control problem. The Day-Ahead S-MILP optimization attempts to minimize the expected cost of the

whole system, comprising grid energy costs and a weighted penalty on the expected user discomfort (UDI) as it adds up across the various uncertainty conditions due to the probability of each state happening. The constraints impose peak minimization goals, minimum final SoC of EVs, and non-anticaptivity to ensure uniform decisions during the first stage in any situation:

$$\min_{P_{A,u}} \sum_{k=1}^K \pi_k \left[\sum_{t=1}^{24} \lambda_{t,k} \left(\sum_{i \in A} P_{i,t,k} \right) + \alpha \cdot UDI_k \right]$$

$$\sum_{i \in A} P_{i,t,k} \leq P_{\max}, \quad \text{SoC}_{i,t=24,k} \geq \text{SoC}_{\min}$$

At the edge Layer, the MPC solver executes each Δt (e.g., 5-15 mins) to limit deviations from the day-in-advance goals while enforcing strict local constraints over a brief rolling horizon. Thermal comfort and power limits are strictly maintained, with high consequences applied to any violations to ensure patron participation and protection:

$$\min_{P_i^{\text{adj}}} \sum_{t'=t}^{t+T_{\text{MPC}}} \left[(P_{i,t'}^{\text{adj}} - P_{i,t'}^{\text{target}})^2 + \beta \cdot \text{Violation}(C_{\text{local}}) \right]$$

Subject to:

$$T_{\text{indoor},t'} \in [\text{SetPoint} - \Delta T, \text{SetPoint} + \Delta T] \quad \forall t'$$

$$P_{i,t'}^{\text{adj}} \in [P_{i,\min}, P_{i,\max}] \quad \forall t'$$

Methodological and Simulation Results

In order to prove the HOF, a close-to-reality simulation was carried out in a 100-home aggregation over a high-stress 24-hour period on a hot summer day with overlapping EV charging and high cooling load. The high-fidelity synthetic 15-minute load profiles indicated the normal residential load patterns, ambient temperature, and dynamic TOU/CPP price indicators. It consisted of the flexible load portfolio, which was comprised of controllable Level 2 EV chargers (max 4 kW, 40 kWh battery) and a thermostatically controlled model of the HVAC systems, modelled with a 2R2C

thermal equivalent circuit to model thermal inertia. The periods that were perceived as dynamic pricing signals were ultra-low-cost periods (00:00-05:00), mid-cost periods (05:00-16:00), high-cost critical peak period (17:00- 20:00). The HOF had the mandate to optimize the total aggregated energy cost during 24 hours, but at the same time, EVs had to be at 90% SoC at the departure time and the indoor temperatures should not exceed the customer set point by more than 1.50 °C. This configuration shows how the framework can combine stochastic Day-Ahead planning

with rapid and safe real-time implementation, both for cost reduction and full comfort maintenance.

Quantitative Results and Interpretation: The simulation evaluation demonstrates the Hybrid Optimization Framework's (HOF) effectiveness, specifically in managing the maximum hard length of the day, the night internet load top. As shown in Table 1, the framework achieves a full-size reduction in height call for whilst strategically shifting electricity to off-peak periods.

Table 2: Peak Reduction Efficiency (PRE) and Load Shift Analysis

Time Interval	Baseline Aggregated Load (kW)	HOF Optimized Load (kW)	Load Differential (ΔkW)	Peak Reduction Efficiency (PRE)
Morning Peak (07:00-09:00)	120.0	115.0	5.0	4.2%
Evening Peak (17:00-20:00)	175.0	135.5	39.5	22.5%
Off-Peak (23:00-05:00)	85.0	102.0	-17.0	-20.0% (Load Shift)
Total Energy (kWh)	2808	2808	0	0% (Shifting Only)

The outcomes highlight a 22.5% reduction in most demand throughout the evening height, even as the corresponding 20.0% increase in off-peak load confirms that strength changed into strategically shifted as opposed to curtailed. This valley-filling method aligns intake with durations of abundant variable renewable energy (VRE) generation or low wholesale expenses, improving grid hosting ability, enhancing device reliability, and doubtlessly deferring highly-priced transmission and distribution improvements (Singh *et al.*, 2024)^[8].

Robustness, UDI Management, and Economic Value

The mixing of Stochastic Programming inside the Day-ahead level with actual-time model Predictive manipulate (MPC) is critical for ensuring robustness in opposition to

forecasting errors and the upkeep of customer comfort. The HOF maintained the person pain Index (UDI) close to zero, described as the time-averaged temperature deviation (ΔT), with an average deviation of only zero.05°C across the 24-hour length. This became accomplished with the aid of preemptively scheduling high-electricity intake, inclusive of EV charging and thermal pre-conditioning, all through low-cost durations (15:00-17:00). The thermal inertia of building structures acts as a temporary energy garage, permitting the real-time MPC to soundly curtail HVAC intake during peak hours without exceeding the $\pm 1.5^{\circ}\text{C}$ comfort boundary. This proactive, model-based approach is advanced over reactive DR strategies, which frequently bring about pain and better opt-out rates (Mauzeral *et al.*, 2025)^[5].

Table 3: Peak Reduction Efficiency (PRE) and Load Shift Analysis

DR Strategy	Average Temperature Violation (ΔT_{avg})	Max Temperature Violation (ΔT_{max})	Customer Opt-out Risk
Baseline (No DR)	0.00°C	0.00°C	Low
Reactive/Simple DLC	0.85°C	2.5°C	High
HOF (S-MILP + MPC)	0.05°C	1.4°C	Very Low

Moreover, the aggregated financial effect for the purchaser institution is sizable. The strategic load moving reduced the exposure to the high-fee tariff period (17:00-20:00). The simulation confirmed a 17.8% saving in the general

aggregated power fee over the 24 hours in comparison to the uncontrolled baseline, demonstrating clean monetary value for each of the aggregators (reduced height potential payments) and the stop-consumer (decrease invoice).

Table 4: Economic Cost Savings Analysis

Metric	Baseline Total Cost (\$)	HOF Optimized Total Cost (\$)	Percentage Reduction
Total Energy Cost (24h)	\$655.40	\$538.74	17.8%
Peak Period Cost (17:00-20:00)	\$310.20	\$195.00	37.1%
Off-Peak Period Cost (23:00-05:00)	\$58.00	\$83.50	-44.0% (Increased Usage)

Non-Technical Obstacles and Implementation Hurdles

The fulfilment of the full potential of AMI-enabled Demand Response (DR) must have technological progress supplemented by progressive regulation and security systems. The Hybrid Optimization Framework (HOF) is incapable of functioning optimally when the external barriers block the way of data transmission or restrict the involvement of resources. Cybersecurity threats, data

privacy concerns, and regulatory restrictions are the most important aspects that should be overcome to allow mass adoption.

Cybersecurity and Data Privacy Procedures

The sheer volume of network endpoints, such as smart meters, Home energy management systems (HEMS), and

smart appliances, exponentially expands the attack surface of the grid. AMI cyberattacks are a fact; they can affect billing integrity by the denial-of-service attack or by tampering with data, as well as destabilizing the system by a coordinated load tripping or power cycling. The adoption should then be in accordance with the rigorously tiered security measures, with standards like NISTIR 7628 as a guide. Communications between meters and MDMS and HEMS are required to be encrypted and authenticated with strong cryptography algorithms such as AES-256, and the use of digital certificates to ensure the integrity of data, and also to avoid unauthorized command injection, which is critical in ADR functions in the HOF. The privacy-preserving computing models like Federated Learning (FL) enable the training of predictive models without the need to store raw consumption data in a centralized location. Differential Privacy (DP) makes sure that aggregated information disclosed to market actors does not violate any laws, such as GDPR and CCPA, and generates customer trust (Javed *et al.*, 2023) [4]. Also, Intrusion Detection Systems (IDS) based on meter data patterns, which are trained using AI, are capable of detecting compromised devices or suspicious data streams early on, which can serve as an early warning system in coordinated cyber-physical attacks (Bakare *et al.*, 2023) [2].

Market Design Barriers Regulatory

Current regulatory policies were mostly created to support centralized, unidirectional energy flows and tend to prevent the total integration and even appreciation of DR as a distributed energy source. Communicating and measuring protocols Standardized communication and measurement and verification protocols are needed in order to allow independent aggregators to bid distributed DR capacity alongside conventional generation resources. The intervals between settlements must coincide with AMI capabilities, such as the 5-minute settlements in the US FERC Orders 745 and 2222, and unambiguous and non-discriminatory market entry conditions should be developed. More than that, there is a need to have regulatory direction on the ownership of consumer data. The open, standardized APIs are required to provide secure access to third parties, cross-vendor interoperability, and smooth integration of customer-side devices. Devoid of such structures, the deployment of HOF is prone to fragmentation and low scalability. Incentive systems are also significant; regulators should authorize the use of dynamic tariff systems such as Real-Time Pricing (RTP) and Critical Peak Pricing (CPP), which offer a good economic signal but at the same time provide consumer protection and education programmes to promote fair play.

Equity, Acceptance and Behavioural Aspects

Long-term success relies on the development of long-term customer acceptance, which is based on trust and perceived fairness. Dynamic pricing signals may unfairly affect vulnerable populations, including households that require essential medical equipment or who have lower incomes. The solution to this needs to involve guaranteed protection of bills, subsidized installation of HEMS, home weatherization, and low-friction opt-in programmes that have opt-out provisions. Clarity is also paramount; customers should know the reasons for control actions and

their effects on savings, as well as what comfort limits are upheld. Real-time feedback should be available in customer portals and in-home displays (IHDs) such as: HVAC minimized by 1 kW to save 1.50 during system peak. Transparency, as the behaviour research establishes, can enhance the persistence in participation and the general trust (Mauzerall *et al.*, 2025) [5]. Human behaviour should also be optimized, so that penalty functions in the HOF should be designed to reduce the number of annoyance fatigue cases by making sure that the few powerful DR events are optimized instead of frequent minor adjustments.

Conclusion and Future Research Directions

The optimization of demand response using modern smart metering infrastructure is not a technical enhancement but rather a structural requirement in making grids more flexible, lowering the costs of the system, and allowing large-scale integration of renewables. Smart meters offer the necessary critical measurement, communication, and control features needed to achieve automated high-performance DR. The HOF, a combination of machine learning prediction, robust S-MILP Day-Ahead planning, and real-time adaptive control (MPC), provides scalability, risk-controlled performance to hundreds of metrics with large durations and stringent guarantees on customer comfort and data integrity. Several areas of research should be given priority in the future. Operational and comfort guarantees provided through safety-constrained reinforcement learning (SCRL) algorithms are a crucial step in moving the complexity of the control decision-making to the edge, speeding up and increasing privacy without reducing reliability. Federated Learning protocols that are scalable with Differential Privacy are required to have high-quality predictive models being trained over millions of smart meters with little communication overhead. Pilot projects of transactive energy markets that are large-scale are essential to evaluate the economic efficiency of decentralized pricing and autonomous participation of smart meters. Lastly, the HOF needs to be extended to organize flexible load distribution in addition to Distributed Energy Resources (DERs) like residential solar PV and behind-the-meter battery storage to realize micro-grid resilience and optimal local energy management (Shariatzadeh, 2015) [7]. The economic and environmental potential of AMI-enabled DR lies in the continued evolution of control theory, computer science, and responsive regulatory and ethical governance prioritizing grid stability as well as consumer welfare.

References

1. Alireza Ghasempour. Smart grid: 20 years of research. *Applied Energy*. 2016;179:602-614.
2. Mohammed Sadiq Bakare, Abdulkarim Abdulkarim, Muhammad Zeeshan, *et al.* A comprehensive overview of the demand side energy management towards smart grids: challenges, solutions, and future direction. *Energy Informatics*. 2023;6(4). Available from: <https://energyinformatics.springeropen.com/articles/10.1186/s42162-023-00262-7>
3. International Energy Agency. Demand side management and smart grid: technology roadmap. Paris: International Energy Agency; 2021. Available from: <https://www.iea.org/reports/demand-side-management-and-smart-grid-technology-roadmap>

4. Syed Javed, *et al.* An approach towards demand response optimization at the edge using federated learning. *Renewable Energy Focus*. 2023;47:100345.
5. Denise Mauzerall, *et al.* Insights from large-scale smart meter field studies: policy brief on data privacy and consumer behaviour. 2025.
6. Seyed Mohsen Mohseni, Saeed Rahimi, Reza Etesami. Demand response optimization in smart grids. In: *Smart grids and their technologies*. Springer; 2019. p. 201-230.
7. Farhad Shariatzadeh. Demand response for sustainable energy systems: a comprehensive review. *Renewable and Sustainable Energy Reviews*. 2015;49:1-11.
8. Amarjit R. Singh, *et al.* Optimizing demand response and load balancing in smart grids using segmentation. *Scientific Reports*. 2024;14:82257.
9. Yunjian Wang, Qixin Chen, Tianzhen Hong, Chongqing Kang. Review of smart meter data analytics: applications, methodologies and challenges. *IEEE Transactions on Smart Grid*. 2018;10(3):3125-3148.
10. World Bank Group. Demand response: implementation and regulatory guidance for developing economies. Washington (DC): World Bank; 2024.