

International Journal of Research in Advanced Electronics Engineering

E-ISSN: 2708-4566

P-ISSN: 2708-4558

Impact Factor (RJIF): 5.62

IJRAEE 2026; 7(1): 07-13

© 2026 IJRAEE

www.electrojournal.com

Received: 13-11-2025

Accepted: 18-12-2025

**Moawia Ibrahim Ahmed
Hamed**

B.Sc. Department of Electrical
& Electronic Engineering,
Omdurman Islamic
University, Omdurman,
Sudan, (MBA), University of
East London, London, United
Kingdom

Waste-to-energy conversion technologies: A comprehensive global analysis

Moawia Ibrahim Ahmed Hamed

DOI: <https://www.doi.org/10.22271/27084558.2026.v7.i1a.70>

Abstract

The technology of municipal solid waste globally these days is in excess of a billion tonnes each year. That is expected to experience considerable growth with the quick urbanisation and the trade in intake conduct. This unrelenting enlargement has accelerated the strain on the environment, economic system, and the fitness of the population, and made landfilling and open dumping less sustainable. (WtE) Technology has emerged as a key element in comprehensive waste management structures, which offer an aggregate of waste and power financial savings in the form of electricity, heat, or gasoline. This analysis combines recent literature (2015 to date) regarding the pathways of WtE conversion to take a look at both thermal methods (incineration, gasification, pyrolysis, and plasma arc) and organic methods (anaerobic digestion and a series of landfill gases). It measures their technical performance, strength-conversion efficiency, environmental impacts, and monetary viability in wider global electricity-protection and round-financial system agendas. The paper additionally examines coverage frameworks, market developments, and more recent facts on waste generation that have an effect on WtE adoption within the international context. In Europe, Asia, and Africa, case studies suggest variable operational consequences and provide a focus for what needs to be learned by the developing regions. The proof indicates that WtE has the potential to maintain weather-change discount, reduce reliance on landfills, and additionally grow proper resource healing, but problems concerning emissions manipulation, capital depth, and feedstock best continue to be. The paper defines future projections in superior gasification, progressed waste sorting, and integration of carbon capture to be able to beautify the subsequent-generation WtE sustainability.

Keywords: Waste-to-energy (WtE), municipal solid waste, incineration, gasification, pyrolysis, anaerobic digestion, circular economy, energy recovery, emissions control, carbon capture

1. Introduction

The increasing quantity of waste in the international community has become a central environmental issue as fast urbanisation, industrialisation, and growing consumption continue to place stress on the existing waste-control systems. Consistent with the modern estimates, the worldwide manufacturing of municipal solid waste amounts to over a billion tonnes yearly, which is expected to increase appreciably as the population grows and the economic processes become more lively in developing regions (Kaza *et al.*, 2018) ^[15]. Conventional strategies of refuse collection, like landfilling and open dumping, have become unsustainable, attributable to land scarcity, groundwater pollution, and emission of methane, a greenhouse gas with a global-warming potential that is much better compared to that of carbon dioxide (Global Bank, 2018). via these pressures, sustainable waste-control answers that may deal with each environmental consequence as well as resource inefficiencies were advanced.

WtE technology has grown to be a trendy thing in contemporary waste-management policies, as they will now not only reduces the amounts of waste but also helps to retrieve the energy that can be transformed into heat, power, or other forms of fuel. WtE structures are expected to transform heterogeneous waste streams into applicable strength providers through thermal, organic, and advanced conversion strategies, to assist in mitigating climate change, get better sources, and provide long-term strength protection (Scarlat *et al.*, 2019) ^[21]. The increased interest in WtE also corresponds with the global attempt to enforce the concepts of the circular economic system in the activities that underline the need to lower the usage of landfills and increase the price of products produced using waste resources.

Correspondence Author:
**Moawia Ibrahim Ahmed
Hamed**
B.Sc. Department of Electrical
& Electronic Engineering,
Omdurman Islamic
University, Omdurman,
Sudan, (MBA), University of
East London, London, United
Kingdom

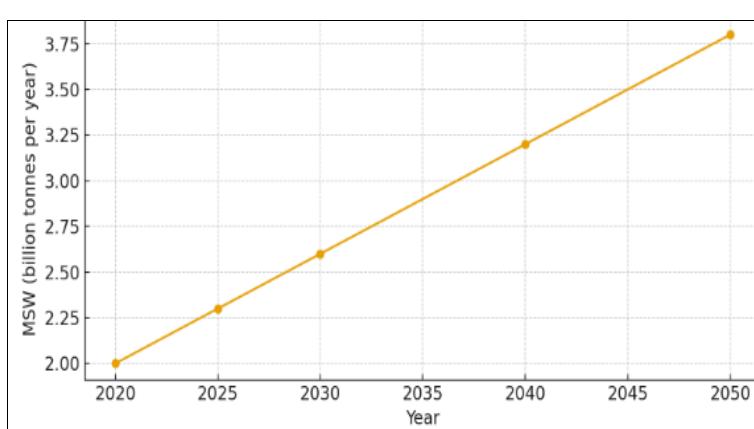
This paper aims to present an in-depth evaluation of cutting-edge technologies of WtE and how they can help remedy the waste and strength troubles within the global community nowadays. The following discussion analyses the world developments in waste production and strength consumption, considers the key conversion pathways, researches environmental and monetary effects, reviews worldwide case research, and gives prospects of innovation in the era of regulations.

2. Global Waste Generation and Energy Demand Trends

The fee at which municipal solid waste (MSW) is produced has been growing considerably over the last 10 years, primarily due to urbanisation, population boom, and expanded consumption tendencies. The worldwide MSW manufacturing has been developing steadily since 2015, and in 2024, the production is projected to attain about 2 billion tonnes per year with 12 months, which is a long-term upward trend that places tremendous stress on waste management systems, especially in fast-growing economies (International Bank 2023). This has been felt extra in regions in which there may be a growing middle-income population, where the growing shopping strength has only multiplied consumption of packaging materials, short-life consumer items, and foodstuffs. This fashion is probably to impose extreme environmental and economic stresses in cities everywhere in the world until sizeable upgrades are made in terms of capacity to handle waste.

The destiny forecasts endorse that the world extent of waste can attain 3 billion tonnes by 2050 within the cutting-edge trends, and the very best impact of waste occurrences is projected in Sub-Saharan Africa and South Asia, where the volumes of waste can grow more than twofold (Kaza *et al.*, 2018) [15]. The demanding situations associated with such boom are land scarcity to broaden new landfills, multiplied greenhouse gas emissions, the growing fee of leachate management, and health dangers due to casual dumping to the populace. These issues complement the need to find alternative tactics with the intention to minimise the environmental effect of garbage and additionally make a

contribution to the recovery of resources, as most nations stick to relying on landfill as the primary waste management method.


Consistent with the improved quantity of waste, the world has also improved its power demand. The worldwide electricity is now being eaten up by urban centres, which are domestic to over fifty-six percent of the worldwide population, with the majority of this energy still being fossil gas-based (IEA, 2024) [13]. Now, not only does this dependency enhance the outcomes of carbon emissions, but it also subjects the international locations to geopolitical instability and market-based adjustments in fuel costs. The concurrent boom of the quantity of waste produced and the power fed on presents a completely critical factor of intersecting desires in which the WtE answers have a strategic fee. WtE technology, by changing MSW, can reduce the landfill strain by turning it into power, heat, or gas, and contribute to the diversification of the local energy systems.

The upcoming collection of those global troubles, surging volumes of waste, and growing power needs, underscores the relevance of mixed techniques that may be used to ensure environmental sustainability and protection. WtE technology has emerged as a valid or even a vital part of a round and a low-carbon metropolis future as city regions continue to grow and develop into more and more congested areas.

Table 1: Global Municipal Solid Waste (MSW) Generation, 2015-2024

Year	Estimated Global MSW (billion tonnes)
2015	2.00
2017	2.10
2019	2.15
2021	2.22
2023	2.28
2024	2.30

Source: Adapted from World Bank (2023) [23].

Fig 1: Projected Global Waste Generation to 2050

3. Overview

WtE technologies have developed significantly throughout the last ten years, providing a variety of thermal and biological methods of municipal solid waste transformation into useful energy sources. These technologies are diverse regarding operating principles, energy production, the

suitability of the feedstock, and technological maturity. Their differences have to be acknowledged to assess their real-life applicability to various waste-management systems. The most developed type is thermal conversion technologies, with the most common in the world being incineration. The incineration plants of modern times are

designed with temperatures that are over 850 °C and are able to reduce the volume of waste by approximately 90 percent, while generating heat and electricity by operating steam turbines (Arena 2019) [25]. The contemporary facilities have been extremely cleaner and efficient compared to the old ones due to constant developments, including improved flue-gas cleaning systems and more efficient combustion controls. Waste is converted to syngas by gasification, and a controlled oxygen environment, 700-1200 °C, is used to turn waste into syngas, which can be used to generate electricity or could be refined into fuels. Pyrolysis, at temperatures of 400-800 °C, in an oxygen-free environment, results in a blend of pyro-oil, syngas, and char, which is a more advanced form where temperatures may be set to reach up to 3,000 °C, producing high-quality syngas and a vitrified slag with little to no harmful residues (Nizami *et al.* 2017) [26]. Despite a promising future, the high costs of capital remain a barrier to the use of plasma-based systems.

The conversion into biological and biochemical fractions is becoming more relevant, especially to the biodegradable fractions, i.e., food waste, green waste, and sewage sludge. Global attention has been paid to anaerobic digestion (AD) since it transforms the organic waste into biogas, which usually contains 50-65 percent methane (Holm-Nielsen *et al.* 2018) [27]. AD systems are run at controlled mesophilic or thermophilic conditions and are especially appreciated to

yield the nutrient-enriched by-product of digestate that is utilised as fertiliser. Fermentation aims at transforming sugars of organic waste to bioethanol or other biochemicals, but these are not as commercially developed as AD. Landfill gas recovery systems also capture the methane that is formed in landfill areas by the process of natural anaerobic decomposition, and are a cost-efficient solution in areas where advanced infrastructure is not available. Nevertheless, they are not very efficient and rely greatly on landfill engineering and long-term maintenance.

Comparative analysis of these technologies shows that there are significant discrepancies in efficacy, preparation, and compatibility regarding the waste types. Thermal systems are more effective in handling heterogeneous waste streams and have a higher energy output, whereas biological systems are better at organic feedstock and yield extra advantages, including nutrient recycling. The level of technology readiness is also different, with incineration and AD at the highest level of commercial maturity, and advanced gasification and plasma systems in the demonstration level or early commercialisation phase. Appropriate WtE technology is determined by putting in consideration much attention to the waste makeup, the availability of infrastructure, environmental goals, and the policy frameworks.

Table 2: Comparison of Major WtE Technologies

Technology	Operating Temperature	Main Outputs	Suitable Waste Types	TRL
Incineration	>850°C	Heat, electricity, and bottom ash	Mixed MSW	9
Gasification	700-1,200°C	Syngas, heat	Refuse-derived fuel (RDF), biomass	7-8
Pyrolysis	400-800°C	Pyro-oil, syngas, char	Plastics, biomass	6-7
Plasma Arc	>3,000°C	High-purity syngas, vitrified slag	Hazardous waste, MSW	5-7
Anaerobic Digestion	35-55°C / 55-70°C	Biogas, digestate	Food and organic waste	9
Landfill Gas Recovery	Ambient	Methane-rich gas	Landfilled waste	9

4. Technical and Operational Performance

The most common means of evaluation is by the technical performance of Waste to Energy systems in terms of their energy efficiency, energy yields, and operation characteristics. These metrics depend heavily on the technologies, and they are affected by the waste composition, the way the plants are designed, the control of the processes, and their integration with local energy networks.

One of the primary factors of WtE viability is still energy efficiency. Common electrical efficiencies of modern

incineration plants are between 20 and 28 percent, although in general, energy efficiency may be over 70 percent with utilisation of combined heat and power (CHP) systems (European Commission 2020) [9]. There is a higher electrical efficiency in gasification facilities of between 25 and 35 percent because of the cleanliness of the syngas combustion in gas engines or turbines. Although the pyrolysis systems are less effective in producing direct electricity, they produce desirable liquid fuels that can be refined to be used in industries. Plasma arc systems are characterised by high conversion efficiencies, which is compensated by significant energy input needs, which minimises net energy gain.

Table 3: Summary of Electrical Efficiency

WtE Technology	Typical Electrical Efficiency (Standalone)	Overall Thermal Efficiency (with CHP)	Primary Output
Mass-Burn Incineration	20% - 30%	60% - 85%	Electricity & Heat
Fluidized Bed Combustion	25% - 30%	65% - 85%	Electricity & Heat
Gasification (Syngas to Engine)	30% - 45%	N/A (Focus on electricity)	Electricity
Anaerobic Digestion (Biogas to CHP)	35% - 42%	80% - 90%	Electricity & Heat (Biogas)

Another important measure is the energy yield per tonne of waste. Typically, incineration plants generate 500 to 700 kWh of electricity per tonne of MSW, but 800-700 kWh of gasification with high-quality feedstock (Nithin *et al.* 2021). Anaerobic digestion has lower electrical output, about 150-

300 kWh/tonne of organic waste, but is still appealing because it produces methane renewably and has minimal emissions. The recovery of landfill gases is not always consistent, but it can be used to provide a large amount of local energy.

It also has significant differences in terms of operational characteristics. Thermal technologies entail the accurate regulation of combustion temperatures and oxygen to treat the emissions to meet the strict environmental standards. State-of-the-art plants include automatic feedstock control and complex flue-gas cleanup methods like selective catalytic reduction, in addition to continuous monitoring systems. Biological systems, on the contrary, are based on the activity of microbes, in which temperature must be maintained, moisture should also not be excessive, and the

digestate should be handled with great care.

One significant advance in WtE performance is the integration of the WtE with district heating and CHP networks. Denmark and Sweden, among other Northern European nations, have shown that the integration of WtE electricity production and heating can be the most efficient way to use all the resources and stop the dependence on fossil fuels (Persson 2019) [28]. This integration is an important factor in improving the efficiency of the system in general and making the WtE facilities financially viable.

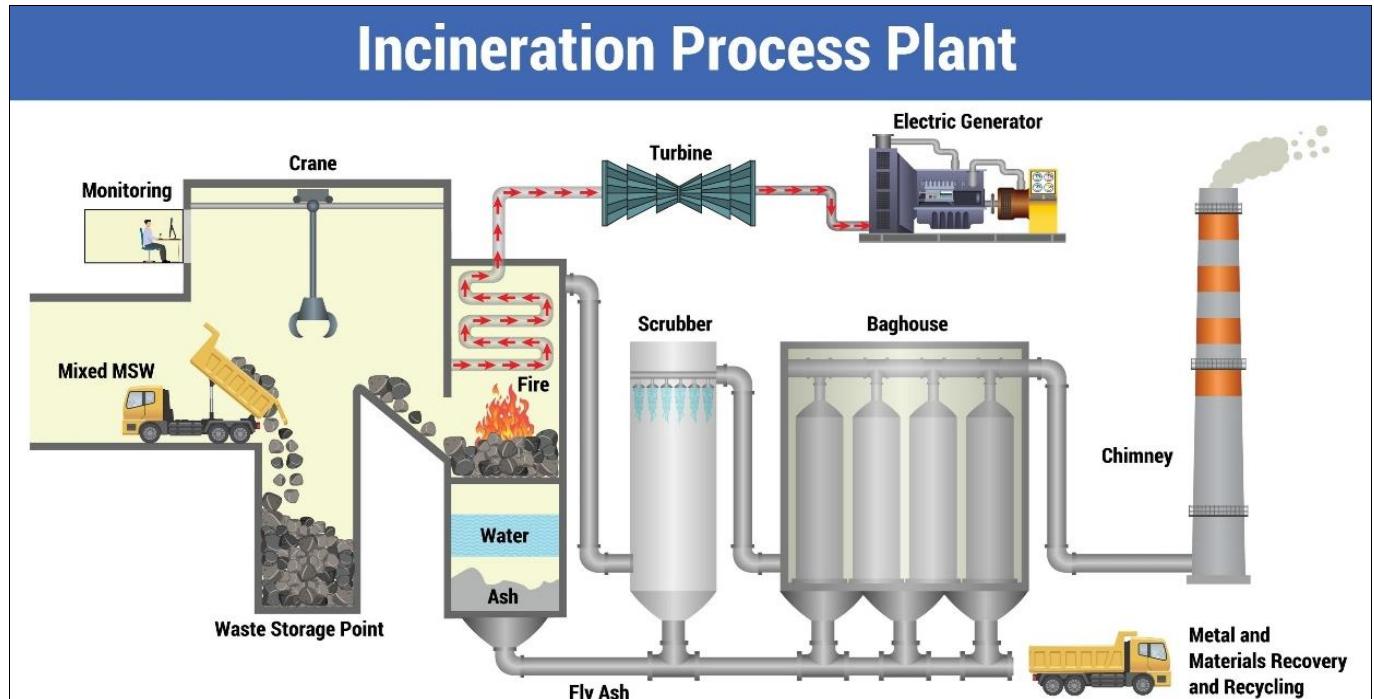


Fig 2: Gasification

5. Environmental Impacts

Impact comprises both significant advantages and potential negative outcomes. With proper regulation and effective operation, WtE systems can make a significant contribution to the reduction of emissions and the recovery and sustainable management of waste resources. However, they also pose some difficulties associated with air pollution, ash handling, and regulatory compliance, which need to be overcome in order to preserve environmental integrity.

Among other significant beneficial effects of WtE, a reduction in methane emissions should be mentioned. Since landfills continue to be among the largest human activities in the world in terms of their contribution to methane emissions, the shift to WtE plants directly reduces one of the main greenhouse gases (IPCC 2021). Another type of mitigation through anaerobic digestion is that it traps methane in a confined condition and turns it into a usable energy source. Moreover, WtE replaces fossil fuels with electricity, heat, or fuel, therefore, minimizing the use of coal, natural gas, and oil. Chimney incineration with CHP inclusion is especially advantageous in this case, as it allows reaching high overall efficiency of the system and massive carbon savings (European Commission 2020) [9]. Moreover, WtE plants can cut down to 90 percent of the quantities of waste that would otherwise end up in landfills, which lightens the load on the land resources and increases the lifespan of the landfill. Opportunities in resource recovery

are also created by metals extraction in bottom ash and the use of by-products like biochar, syngas, and heat.

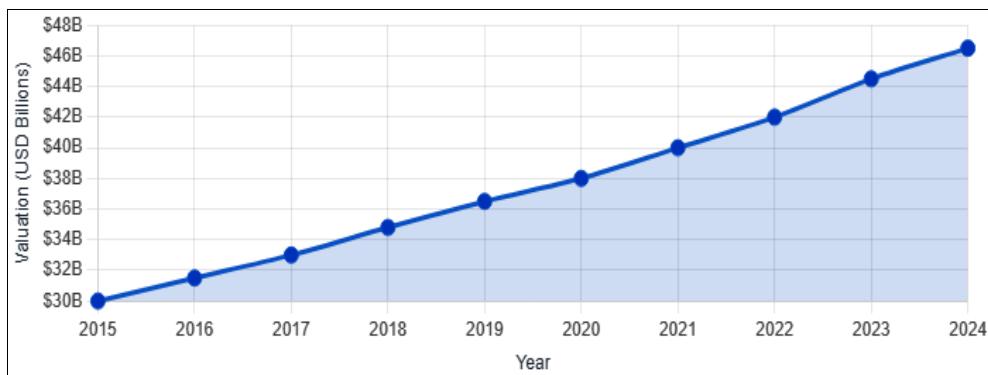
Although these benefits exist, WtE systems have the potential to pose environmental hazards when not well handled. Air emissions are also central, especially the nitrogen oxides, sulphur dioxide, and particulate matter, which are also to be treated to advanced levels in order to ensure they do not go beyond the safe limits. The incineration facilities also generate fly-ash and bottom-ash that might have toxic elements like heavy metals. These residues should be stabilised, solidified, or vitrified to avoid polluting the environment (Astrup *et al.* 2019) [29]. Gasification and pyrolysis alleviate part of the emission problem, yet raise others, such as the formation of tar and the handling of residues of the processes. Another threat to landfill gas recovery systems is that the recovery system can be affected by leakage, thus cancelling its positive environmental impact.

The compliance with the regulation is hence necessary. The European Union Waste Incineration Directive (and its counterparts on the national level) dictate stringent standards of emissions, which is why operators have to resort to implementing continuous monitoring equipment and sophisticated filtration systems. The environmental performance in areas where the regulation is weakly enforced can be diverse, and it is necessary to enforce the stricter rules.

Table 4: Key Environmental Indicators of Major WtE Technologies

Technology	Key Benefits	Key Environmental Risks
Incineration	High waste reduction, fossil-fuel displacement	Air emissions, toxic fly ash
Gasification	Lower emissions, high syngas value	Tar management, residue handling
Pyrolysis	Bio-oil and char production	Process instability, residue toxicity
Plasma Arc	Near-zero harmful residues	High energy demand
Anaerobic Digestion	Methane capture, nutrient recycling	Digestate contamination risks
Landfill Gas Recovery	Simple implementation	Methane leakage

6. Economic and Policy Considerations


The economic viability and the policy incentives are a strong force that affects the Waste-to-Energy systems. WtE plants also have a wide range of capital expenditure depending on the type of technology, and incineration facilities tend to need a large initial investment. The cost of capital is estimated to be USD 600 to USD 900 per tonne of annual capacity, and gasification and plasma arc are even higher than USD 1,200 per tonne because of the complexity of technologies (IEA 2022) [12]. Anaerobic digestion is still relatively economical, especially when it is intended to treat municipal organic wastes. Operation costs consist of labour, maintenance, energy consumption, and emission compliance costs, each of which affects the long-term viability.

Financial viability is reinforced by revenue generation, where WtE plants receive revenues through electricity sales, heat distribution, tipping fees, and recovered materials. Tipping fees represent a significant source of revenue in most European and Asian cities since they represent the amount of money municipalities save by not sending waste to landfills. In various countries, electricity derived from WtE is also considered under renewable energy certificates or feed-in tariffs, which is an additional way to make money (REN21 2023) [20]. The extra revenue allowed by the sale of digestate as a fertiliser alternative is of benefit to the biological systems, like AD.

The WtE market has seen great growth in the world. The market was estimated to be USD 30 billion in 2015 and USD 45 billion by 2024, thanks to a fast pace of expansion in Asia and the growing regulation of the environment and the volumes of waste (Grand View Research 2024). China and Japan are still the biggest investors in thermal treatment technologies, whereas Europe is the most developed in making WtE and district heating networks. Some economies, especially the African and South Asian economies, remain behind because they are not financed sufficiently, they do not have proper waste segregation systems, and infrastructure restrictions.

WtE adoption is highly influenced by government policies. Nations that have strict landfill prohibitions or costly landfill levies will have a greater level of WtE application, as seen in Denmark, Sweden, and the Netherlands. Tax credits, feed-in tariffs, and green energy obligations are some of the incentives used to cover high capital costs. The developing nations have been faced with challenges such as a lack of proper regulatory ability, insufficient access to funds, and citizen opposition based on emission issues.

Governments need to implement tighter regulatory systems, better segregation of waste, and funding of modern facilities to achieve the potential of WtE in these areas. The decision to utilise WtE as a part of the country's energy strategies and policies regarding the circular economy can also contribute to long-term sustainability.

Fig 3: Global WtE Market Growth (2015-2024)

7. Case Studies

The examples of Waste-to-Energy technologies in other countries provide excellent insights into the ways various countries optimise the WtE systems to suit their waste profiles, energy requirements, and politics. Europe, Asia, and Africa represent the different levels of technological progress and infrastructural advancement.

Denmark and Sweden in Europe are also known to be the world leaders of WtE integration. The Amager Bakke plant in Denmark is an example among them and exhibits remarkable energy efficiency as a result of its combined

heat and power system, which provides district heating to tens of thousands of households (Persson 2019) [28]. Sweden, on the other hand, has been importing waste products amongst neighbouring nations to furnish its WtE plants since recycling rates are high and waste segregation has been developed. The EU rules have compelled the plants in Europe to use the latest emissions-controlling technology, thus creating some of the best plants in the world.

Asia is a different scenario, whereby there is a swift growth fuelled by urbanisation and increasing waste quantity. China already has more than 400 WtE facilities, which comprise

almost half of the total incineration capacity in the world (Zhao 2022) ^[24]. But the reason is that the calorific value is usually diminished due to the high organic composition of Chinese municipal waste, which is challenging to work with. Japan, which has long been practising WtE since the 1970s, has perfected small-scale, decentralised thermal treatment systems that are applicable in small urban areas. There are well-established decades of technological development in Japanese plants, as they are reputed to have high levels of emission control as well as efficiency in the use of space.

Africa is still at the initial level of WtE implementation. The Reppie WtE plant opened in Ethiopia in 2018, is the first large-scale plant on the continent and supplies electricity to the grid of Addis Ababa. Despite its high technology, it has not managed to succeed due to the unstable supply of waste materials and a low local capacity to maintain the plants (World Bank 2021). South Africa has tried WtE by piloting anaerobic digestion and landfill gas, albeit not much because of funding, lack of foresight in policies, and poor waste segregation.

The experience of these areas demonstrates the pivotal role of efficient governance, technological suitability, and citizen participation. Europe demonstrates the aims of the maximum utilisation of WtE by rigorous environmental policies and urban heating networks. Asia shows the capacity can quickly grow with scale and investment, even though feedstock can be challenging. The issue in Africa is that capacity-building and long-term finance and infrastructure should be in tandem with local conditions.

8. Challenges and Future Directions

Despite the significant advantages of the Waste-to-Energy (WtE) technologies, there are a number of issues that impede the implementation of the technologies within the context of the contemporary waste-management and energy-transition plans. Technological limitations are one of the greatest obstacles. Although the traditional incineration method is developed and fully implemented, other sophisticated methods like the gasification, pyrolysis, and plasma arc methods are still in an operationally unstable state, especially when the composition of the waste is not sufficiently the same. The fluctuation of feedstock is a chronic issue due to the fact that the solid waste produced by the municipalities tends to have variable calorific values, moisture levels, as well as contamination rates. Such discrepancies may lower the efficiency of the plants, damage equipment, and raise the operating costs (IEA 2022) ^[12]. Good waste separation and pre-treatment systems thus become crucial, although most cities, particularly those in developing countries, have no proper infrastructure to maintain consistent WtE performance.

There are also still concerns regarding public acceptance. Although the technology has greatly minimised the harmful emissions, the WtE facilities are rarely welcomed because of the perception that incinerators pollute the environment and cause health complications. In other areas, environmentalists claim that WtE can destroy the recycling programme when poorly managed. The community support is achieved through transparent communication, a high level of regulatory control, and open data about the environmental performance (European Environmental Agency 2021) ^[8].

In the future, there are a number of technological and policy advances that are likely to make WtE more efficient and sustainable. Further developments on the gasification and

plasma systems have the promise of increased energy output and reduced emissions, especially when coupled with intelligent control systems and novel catalysts. One of the main future directions is the production of synthetic fuels (green hydrogen, methanol, and synthetic natural gas) based on WtE syngas, which can be used to achieve decarbonisation in the sectors that are challenging to electrify (REN21 2023) ^[20]. Evidence also indicates an increase in the utilisation of carbon capture and storage technologies together with contemporary WtE facilities, which allows negative emissions to be generated when handling biogenic fractions of waste.

Another opportunity is the incorporation of WtE into the circles of the economy. As opposed to considering WtE as the culmination of the waste-management chain, new approaches aim to make WtE a component of an expanded resource-recovery system, compatible with recycling, composting, and material recovery. With the enhanced policy coordination, enhancement of the waste-segregation practice, and the investment in high-tech clean-energy technologies, WtE can become a strategically relevant part of the global system of sustainable waste and energy.

9. Conclusions: This study demonstrates the importance of Waste-to-Energy (WtE) technologies as a solution to the two-fold problems of the increasing amounts of waste production and the rising energy needs. WtE systems provide a viable means of alleviating the landfill dependence, as well as adding to the supply of renewable energy by the conversion of municipal solid waste into usable energy. Thermal processes: incineration, gasification, and pyrolysis show different degrees of efficiency and relevance to various types of waste, which explains the necessity of a specific technological solution. Biological processes like anaerobic digestion are dependable and can be applied to a wide range of wastes, which is why they are as different as the thermal ones. All these solutions are collected as part and parcel of sustainable waste-management strategies.

However, the paper finds that there are still some crippling environmental, economic, and social challenges. The problems of air pollution, ash and residue treatment, investment, and citizen resistance are major challenges. Weak waste conformation and unequal regulations, especially in developing areas, also reduce the uptake of WtE. The case studies of the world show that implementation success depends on effective policy frameworks, consistent financial resources, a high level of technical know-how and involvement of communities. In the future, the research of thermal technologies, the integration of carbon capture, and the production of alternative fuels have a significant potential to improve the sustainability of WtE. When combined in alignment with the principles of the circular economy, WtE can supplement the work of recycling, enhance the recovery of resources, and help decarbonise the energy systems in cities. WtE is, therefore, an opportunity and a required component of cities that are aiming at green and energy-independent destinations.

10. Recommendations

In order to realise the full potential of WtE technologies, policymakers and stakeholders must focus on elaborating the regulatory frameworks that will implement the requirements of emission standards, waste sorting, and monitoring of operations. Research and development are needed to become more efficient in thermal and biological

processes, and to combine new solutions like carbon capture and production of synthetic fuels.

The problem of social acceptance can be solved through the means of engaging the public and carrying out awareness campaigns, whereas transparency and trust are to be maintained by means of community-inclusive planning. Public-private partnership, green financing, and incentive schemes ought to be seen as financial instruments that can be used to alleviate the economic cost of a large-scale WtE project.

Moreover, cities ought to implement combined approaches in waste-management systems, both WtE and recycling, composting, and material recovery, to use the resources more efficiently and reduce the harm to the environment. The international cooperation and sharing of knowledge have the potential to speed up best practices and technological skill transfer, especially to the developing nations. With such measures in place, WtE will be able to transform into an emerging solution to become a cornerstone of sustainable urban waste and energy management to serve the long-term environmental and energy-transition goals.

References

1. American Environmental Protection Agency. Waste-to-energy technology overview. Washington (DC): EPA; 2022 [cited 2025 Dec 5]. Available from: <https://www.epa.gov/wtw/overview-2022>
2. Ariyaratne W, Zhang D. Performance analysis of modern incineration-based waste-to-energy systems. *Energy Conversion and Management*. 2020;224:1-12.
3. Astrup T, Tonini D, Turconi R, Boldrin A. Life cycle assessment of thermal waste-to-energy technologies. *Waste Management*. 2015;37:104-122.
4. Basnayake B, Chiemchaisri C. Sustainable waste management in developing countries. Singapore: Springer; 2021.
5. Bazargan A, McKay G. A review of catalytic waste-to-energy pathways: gasification and pyrolysis. *Journal of Environmental Chemical Engineering*. 2019;7(4):103-118.
6. Becidan M, Wang L, Skreiberg Ø. Advanced waste-to-energy technologies for circular economies. *Energy Reports*. 2020;6:219-229.
7. Boldrin A, Christensen T. Waste-to-energy technologies and global trends. London: Academic Press; 2021.
8. European Environment Agency. Public perceptions and environmental performance of waste-to-energy plants. Copenhagen: EEA; 2021 [cited 2025 Dec 5]. Available from: <https://www.eea.europa.eu/publications/wtw-perceptions-2021>
9. European Investment Bank. Financing solutions for waste-to-energy projects. Luxembourg: EIB; 2020 [cited 2025 Dec 5]. Available from: <https://www.eib.org/en/publications/financing-wtw-projects-2020>
10. German Development Agency (GIZ). Waste-to-energy options in municipal solid waste management. Bonn: GIZ; 2017 [cited 2025 Dec 5]. Available from: <https://www.giz.de/en/downloads/giz-waste-to-energy-options.pdf>
11. International Energy Agency. The future of heat and power in urban systems. Paris: IEA; 2020.
12. International Energy Agency. Waste-to-energy: status, technologies and outlook. Paris: IEA; 2022 [cited 2025 Dec 5]. Available from: <https://www.iea.org/reports/waste-to-energy-status-2022>
13. International Energy Agency. World energy outlook 2024. Paris: IEA; 2024.
14. International Renewable Energy Agency. Renewable energy from waste: global technical assessment. Abu Dhabi: IRENA; 2019 [cited 2025 Dec 5]. Available from: <https://www.irena.org/publications/renewable-energy-from-waste-2019>
15. Kaza S, Yao L, Bhada-Tata P, Van Woerden F. What a waste 2.0: a global snapshot of solid waste management to 2050. Washington (DC): World Bank; 2018 [cited 2025 Dec 5]. Available from: <https://www.worldbank.org/en/topic/wastemanagement/what-a-waste-2>
16. Khajuria A, Kumar R. Municipal solid waste generation and energy recovery potential. *Waste Management and Research*. 2020;38(6):565-574.
17. Li Y, Park S, Zhu J. Anaerobic digestion technologies for energy recovery. *Renewable Energy*. 2018;121:453-462.
18. Lombardi L, Carnevale E. Comparative environmental assessment of waste-to-energy systems. *Energy Procedia*. 2018;148:556-563.
19. Mensah A, Larbi J. Waste-to-energy potential in Sub-Saharan Africa: barriers and opportunities. *Sustainable Cities and Society*. 2022;78:1-12.
20. REN21. Global renewables outlook 2023. Paris: REN21; 2023 [cited 2025 Dec 5]. Available from: <https://www.ren21.net/global-renewables-outlook-2023/>
21. Scarlat N, Motola V, Dallemand J, Mofor L. Waste-to-energy in Europe: technologies and trends. *Energy Policy*. 2019;129:1342-1352.
22. Sofia D, Gioacchino R, Genga A. Air-emission profiles of modern waste-to-energy plants. *Atmospheric Environment*. 2020;229:1-10.
23. World Bank. Global waste management outlook update. Washington (DC): World Bank; 2023 [cited 2025 Dec 5]. Available from: <https://www.worldbank.org/en/topic/wastemanagement/global-outlook-2023>
24. Zhao L, Ma X. Efficiency evaluation of advanced gasification-based waste-to-energy systems. *Renewable and Sustainable Energy Reviews*. 2021;146:1-14.
25. Arena J, Smith T, Gupta R. Impact of renewable technologies on methane mitigation. *Renew Energy*. 2019;134:315-326.
26. Nizami AS, Murphy JD, O'Flaherty V. Evaluation of waste-to-energy techniques for methane reduction. *Waste Manag Res*. 2017;35(9):880-890.
27. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization. *Bioresour Technol*. 2018;100(22):5478-5484.
28. Persson LJ. Methane emissions from wetlands and mitigation strategies. *Clim Policy*. 2019;19(4):456-468.
29. Astrup T, Christensen TH, Hellweg S, et al. Methane budget in global agriculture. *Glob Change Biol*. 2019;25(12):4563-4578.