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Abstract 
The review paper at hand presupposes the synthesis of existing empirical data and existing research to 

profoundly study the Artificial Intelligence-based Energy Management Systems (AI-EMS) at the 

doctoral level of research. The paper discusses the essential AI paradigms, such as supervised learning, 

deep learning, reinforcement learning, and hybrid-based development, which are the basis of recent 

energy management architectures. The review quantifies the improvement of the performance through 

the systematic analysis of the applications of the building energy management, microgrid operations, 

and the coordination of the demand response and grid-edge control, and critically evaluates the issue of 

implementation. Specific attention is paid to new systemic challenges, such as the energy footprint of 

AI systems in particular, the threat of algorithmic market, and socio-technical barriers to fair 

implementation. As it was revealed in the analysis, AI-EMS is valid in improving operational 

efficiency, integrating renewables, and predictability, but the achievement of implementing AI can be 

achieved with the assistance of structured data governance systems, explainable AI solutions, and 

policy interventions. The paper will also end with some recommendations on how researchers, 

practitioners, and policymakers can proceed to make AI-EMS responsibly use AI-EMS to mitigate the 

risks. The results indicate that AI is an innovative and dual-sided technology in the energy industry that 

must be created with the benefits of calculations against the harms to the environment and society. 

 

Keywords: Artificial intelligence, energy management systems, reinforcement learning, digital twins, 

energy policy, cybersecurity, algorithmic governance, renewable integration 

 

1. Introduction 

1. The Digital Transformation of Energy Systems 

This has been witnessed in the world energy industry, whereby decarbonization requirements 

have been achieved, the end-use industries are electrifying, and operational management is 

becoming computerized. These convergent trends have introduced an element of complexity 

never before experienced in the running of energy systems that have been constituted by a 

combination of both variable renewable energy sources and distributed energy resources. 

Such stochasticity and high-dimensionality of energy networks of the current day may be 

explained by the limitations inherent in the stochasticity of stereotypical energy management 

techniques, which are fundamentally physics-based models, and deterministic techniques of 

control. 

Artificial Intelligence has demonstrated itself as an aid tool to the new generation of energy 

management, offering data regarding prediction, optimization, and autonomous control as 

per the data. The merger of state-of-the-art computational processes alongside the energy 

infrastructure and the creation of the cyber-physical systems that could react to the evolving 

conditions is the future of the Energy Management Systems as the type of AI-based engines. 

Recent reports by the International Energy Agency show that the use of energy AI can make 

the entire world decarbonized on a scale of hundreds of percent and reduce emissions by up 

to 4 percent (in case of optimising energy systems alone) (International Energy Agency, 

2023) [8]. The promise of this kind should be framed in a bigger context regarding the energy 

consumption of AI in general and systemic risks of the control of key infrastructure by 

algorithms. 
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The present paper presents a critical and full review of AI-

EMS, including the technological designs, theoretical basis, 

industry-specific uses, and social-technological results. The 

discussion starts with the basics of AI technologies, moves 

on to practice, and concludes with the evidence-based 

research and policy recommendations. The applications that 

are covered under the scope include building scale 

applications, microgrid coordination, distribution system 

optimization, and market participation frameworks with a 

special focus on the latest developments (post-2020) in 

reinforcement learning and digital twin technologies. 

 

2. Methodological Foundations of AI in Energy 

Management 

2.1 Supervised Learning Paradigms for Predictive 

Analytics: The methodological basis of predictive analytics 

in the management of energy is supervised learning 

approaches. The techniques are based on historical data to 

develop a working relationship between input variables 

(weather conditions, temporal variables, economic signals) 

and target variables (energy consumption, renewable 

generation, market prices). The modern applications have 

gone much further than the classical regression models, and 

the ensemble methods have shown specific effectiveness in 

the applications of energy forecasting. 

In short-term load forecasting competitions, gradient 

boosting machines with loss functions often based on XG 

Boost and Light GBM often use up to 15-30% in prediction 

error when compared to more traditional statistical methods 

(Zhang et al., 2022) [24]. These models are also good at 

capturing nonlinear relationships and are computationally 

efficient; therefore, they are ideal for real-time applications. 

Recent developments in automated feature engineering and 

hyperparameter optimization have brought about further 

improvements in their applicability to a wide variety of 

energy settings, such as the management of single buildings 

and the work of regional grids. 

Deep learning models have been able to transform time 

series prediction by their ability to capture deep connections 

over time. Long Short-Term Memory networks and their 

implemented variations have shown superior results in 

capturing the diurnal, weekly, and seasonal patterns in 

energy data, specifically with added attention mechanisms 

that allow selective attention to a specific area of interest 

(Chen et al., 2023) [3]. Transformer architectures, first 

introduced to solve natural language processing problems, 

are also used to solve multivariate energy prediction 

problems, with their better parallelization and the ability to 

capture long-range interactions without the vanishing 

gradient issue with traditional recurrent networks. 

 

2.2 Sequential Decision-Making through Reinforcement 

Learning: Reinforcement learning is also the paradigm shift 

in the control of energy systems, because, through their 

interaction with their environment, autonomous agents can 

learn the best policies. In comparison to supervised 

methods, which need large labelled datasets, RL agents 

adapt control policies by optimising cumulative rewards 

across time; hence, they are specifically applicable to 

delayed consequence problems with state-action spaces of 

high complexity. 

Deep Reinforcement Learning uses deep neural networks in 

conjunction with RL models that allow agents to operate 

with high-dimensional state representations that are 

common to energy systems. Environment Recent instances 

of energy management in a building setting have shown that 

DRL agents can save energy by 20-35% relative to 

traditional rule-based controllers, and at the same time, they 

can hold or increase thermal comfort conditions (Wang et 

al., 2023) [21]. This performance improvement is especially 

great in systems with large thermal inertia, and in which 

DRL agents can make good use of predictive capacity by 

adopting pre-cooling or pre-heating strategies that smooth 

demand curves. 

Combining RL and digital twin technologies has overcome 

one of the main drawbacks of RL implementation, which is 

the necessity to explore large areas that are either not 

feasible or not safe in the real world. Digital twins offer 

high-fidelity simulation conditions in which agents may 

experiment with suboptimal behaviours and learn strong 

policies in advance, prior to implementation. Recent studies 

have shown that pretrained policies on digital twin settings 

can converge 40-60 times faster on physical systems after 

fine-tuning, which is a substantial reduction in the risk of 

operational failure and a drop in performance in the early 

stages of deployment (Zhao et al., 2023) [25]. 

 

2.3 Learning Physics-informed and Hybrid 

Methodologies 

The intrinsic safety demands and physical limitations of 

energy systems have stimulated the increased interest in 

hybrid approaches, which are based on the use of data-

driven methods in conjunction with physics-based models. 

Physics-informed neural networks use governing equations 

as regularisation terms in the training stage to make sure 

that the predicted values comply with the general rules of 

physics even in data-sparse areas (Karniadakis et al., 2021) 
[10]. This has been especially useful in thermal modelling, 

where it has minimised prediction error up to 50 percent of 

purely data-driven methods when extrapolating outside 

training conditions. 

Another notable hybridised paradigm is model predictive 

control augmented with machine learning. Classical MPC is 

based on precise system models to find a solution to finite-

horizon optimization with constraints. ML-enhanced MPC 

substitutes or adds these models with data-based surrogates, 

enhancing the accuracy of their predictions, without 

compromising the constraint satisfaction guarantees that are 

paramount to safety-critical usages. The latest 

incorporations in district energy systems have shown that 

they are 15-25 percent more efficient than traditional MPC 

methods (Drgona et al., 2022) [5]. 

 

3. Architectural Considerations and Implementation 

Frameworks 

3.1 Edge-Cloud Computing Architectures 

The latency and computational needs of AI-EMS have led to 

the design of advanced edge-cloud systems that segregate 

intelligence throughout the computational spectrum. EC 

nodes (usually located at the building or substation level) 

are used to execute inferences with latency requirements of 

sub-seconds, such as fault detection or primary frequency 

response. More computationally intensive tasks, like the 

training of models, portfolio optimization, and coordination 

across systems, are supported with the resources of cloud 

computing. 
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Recent innovations in federated learning have facilitated the 

training of models in collaboration with distributed edge 

devices without concentrating sensitive data for operation. 

The paradigm is especially applicable to energy 

applications, in which privacy of data issues and regulatory 

aspects usually restrict the sharing of data. Demand-

forecasting implementations have shown that federated 

learning solutions can obtain 90-95 percent of the accuracy 

of centralised training with 80-90 percent less data 

transmission needs (Liu et al., 2023) [12]. Innovations in 

compression algorithms and communication-efficient 

protocols have decreased the computational overhead of 

federated averaging algorithms by a significant margin. 

 

3.2 Data Infrastructure and Quality Assurance 

Data quality and availability are the key limitations to the 

performance of AI-EMS. Modern applications demand 

powerful data pipelines that overcome the typical problems 

of energy data, such as missing data, measurement error, 

sampling error, and concept drift. Statistically controlled 

automated frameworks of quality assurance have been found 

to enhance the reliability in the models used, and in one 

case, false positive rates appear to decrease by 40% when 

using systematic data validation to detect anomalies (Smith 

et al., 2022) [18]. 

Interoperability of heterogeneous energy ecosystems 

requires standardised data models and communications 

protocols. A set of standards, including the Open ADR 

standard, has been popular in automated demand response 

communications, and the IEEE 2030.5 standard in smart 

energy profile management. More recent extensions to these 

standards directly cover the deployment of AI models and 

version management, which allows the deployment of 

algorithms to be updated over-the-air and performance 

monitored (Johnson et al., 2023) [9]. 

 

4. Sector-Specific Applications and Performance 

Validation 

4.1 Building Energy Management Systems 

Energy management is the most advanced area of AI-EMS 

implementation, where there have been plenty of 

commercial implementations and comprehensive scholarly 

validation. State-of-the-art DRL-based control approaches 

have achieved stable energy savings of 20-30 percent in 

commercial buildings across a variety of climates and have 

delivered strong results in buildings with high thermal mass 

and predictable occupancy (Vázquez-Canteli et al., 2023) 
[20]. By such a combination of predictive setback and 

optimal start strategies and coordinated control of various 

building systems, these savings are obtained. 

Occupancy-aware control is a highly prospective field of 

application, in which computer vision and sensor fusion 

methods can be used to adjust to the real-world usage of a 

building in real-time. Applications in office buildings have 

been shown to save 10-15% of energy over schedule-based 

control as well as positively affect occupant satisfaction 

scores by 20-25%, simultaneously (Brown et al., 2023) [2]. 

These benefits have been further augmented with the 

introduction of personalized comfort models, but this has 

brought serious privacy concerns, which have to be dealt 

with both technically and in terms of policy. 

4.2 Distributed Energy Resource Coordination and 

Microgrid: Controllers of microgrids based on AI methods 

have shown a high level of efficiency and resilience. 

Particularly, multi-agent reinforcement learning methods 

have shown great success in what is known as coordination 

of the heterogeneous DERs, and experimentally, field trials 

have revealed that operational costs decrease by 25-40% as 

compared to traditional hierarchical controllers (Nguyen et 

al., 2023) [14]. These strategies are good at managing 

conflicts between stakeholders, e.g., reducing costs and 

increasing self-consumption of renewable energy, or 

providing grid services. 

In various islanded systems, AI-based management of 

microgrids has been shown to provide resilience 

improvement by 30-50% in terms of outage time during 

extreme weather conditions through predictive load 

shedding and redispatch of generation (Martinez et al., 

2023) [13]. Such systems use ensemble prediction methods to 

measure uncertainty in prediction and apply strong 

optimization methods to keep important services alive in the 

worst-case scenario. 

 

4.3 Distribution System Optimization 

At the distribution end, AI technologies are transforming the 

way voltage is regulated, congestion is managed, and faults 

are detected. Topology identification Deep learning methods 

have demonstrated the ability to identify a topology with 95 

percent accuracy in real-world applications and reconfigure 

dynamically to minimize losses (Thompson et al., 2023) [19]. 

These systems manipulate the information of advanced 

metering infrastructure and micro-PMUs to build the correct 

network models that respond to changing conditions. 

Autonomous encoder-based anomaly detection algorithms 

have been shown to have excellent sensitivity to detecting 

incipient faults, and one utility-scale system has identified 

85% of transformer faults at least 48 hours before a 

catastrophic fault (Williams et al., 2023) [22]. The economic 

strength of such predictive capabilities is very high, where 

the outage avoidance costs are often 5-10 times higher than 

the implementation cost. 

 

5. Systemic Considerations and Emerging Challenges 

5.1 Energy Footprint of AI Systems 

The energy requirements of sophisticated AI algorithms are 

a source of major energy consumption that needs to be 

considered during net environmental assessments. Energy 

applications: Training large foundation models may require 

hundreds of MWh of electricity, and carbon emissions 

depend on the regional grid mix. Recent life-cycle analyses 

suggest that the operational utility of AI-EMS normally 

outweighs the computational energy embodied in it in 6-18 

months of use, but this differs considerably with application 

characteristics and embodiment efficiency (Green et al., 

2023) [7]. 

The efficiency of the algorithms has dramatically cut the 

inference time and energy usage of the deployed models. 

Methods to achieve 60-75 percent computational energy 

reductions with little loss in accuracy have been 

demonstrated with quantization methods that minimise the 

numerical precision of 32-bit representations to 8-bit 

representations in many energy calculation problems (Patel

https://www.electricaltechjournal.com/


International Journal of Advances in Electrical Engineering  https://www.electricaltechjournal.com 

~ 4 ~ 

et al., 2023) [17]. On the same note, neural architecture 

search methods have also found model architectures with 

similar performance at 30-50 times lower parameter count, 

lowering operational energy needs. 

 

5.2 Algorithms Market Risks and Responses to 
Regulations: The independent work of AI agents on the 
energy market sets new risks connected to manipulating the 
market, the collusion of algorithms, and system instability. 
More recent studies have also found the possibility of tacit 
collusion strategies emerging when reinforcement learning 
agents are unaffiliated and in repeated auction games with 
few players (Fisher et al., 2023) [6]. Such anxieties have led 
to regulation, such as suggesting explainable bidding 
strategies and periodical audit of algorithmic action. 

A recent development that has been seen to be a viable 
method to handle these risks, besides allowing innovation, is 
the regulatory sandboxes. Some jurisdictions have 
introduced such controlled settings in which AI agents have 
the ability to trade in simulated environments and are 
regulated to enable authorities to work on necessary 
safeguards before actual deployment (Roberts et al., 2023) 

[16]. These programmes are usually characterised by the 
necessity of algorithmic transparency, human control 
clauses, and the presence of a kill-switch as a way of 
emergency intervention. 

 

5.3 Equity and Access Issues: Implementation of AI-EMS 
poses the threat of increasing the existing inequities in the 
energy resource distribution, once the gains go to those who 
are too rich and big businesses. More sophisticated energy 
management systems are usually expensive to install, in 
terms of both sensing infrastructure and communication 
infrastructure, as well as computation infrastructure, which 
puts a barrier to adoption among low-income households 
and small businesses. The recent studies show that the 
efficiency gap between high and low-income households 
may increase by 15-25% in the coming decade due to the 
spread of AI technologies without specifically targeted 
interventions (Davis et al., 2023) [4]. 

One of the possible avenues to fairer access is community-
scale implementations. Third-party energy management 
services to residential buildings have shown that capable 
aggregated control of residential DERs can achieve 80-90% 
of the economic benefits of household optimization and also 
reduce per-household infrastructure by 60-70% (Wilson et 
al., 2023) [23]. Mechanisms of policies such as on-bill 
financing, performance-based incentives, and low-income 
targeting requirements have been effective in enhancing 
participation rates among the disadvantaged communities. 

 

6. Research Frontiers and Future Directions 

6.1 Foundation Models for Energy Systems 

Another promising line of research that will potentially 
massively reduce the required quantity of domain-specific 
information is the pretraining of foundation models on a 
large scale. Early applications with a load forecasting 
emphasis have demonstrated that even models that are 
pretrained based on the data of thousands of buildings can 
be competitive at new sites under the condition that only 10-
20 percent of the data on-site is used by traditional models 
(Kumar et al., 2023) [11]. The models utilise the techniques 
of transfer learning to gain knowledge of the general trends 
of energy consumption and realign it to the site attributes. 

 

6.2 Quantum Machine Learning Applications 

The quantum machine learning algorithms can give a 

possible exponential speedup to the energy management 

optimization problems, in particular, unit commitment and 

optimal power flow calculations. Though the current 

quantum devices are still constrained by noise and 

scalability concerns, hybrid quantum-classical algorithms 

have demonstrated promising performance in the 

intermediate-scale. Simulations in the recent past have 

shown that quantum approximate optimization algorithms 

could reduce by 40-60 percent the computation time of day-

ahead scheduling of moderate-scale systems in the presence 

of fault-tolerant quantum computers (Singh et al., 2023) [17]. 

 

6.3 Autonomous System Governance 

An increasing autonomy of AI-EMS must necessitate new 

regulating systems that would ensure a safe and ethical 

operation and safeguard the innovation. Formal verification 

of neural network controllers has given way to ways of 

providing provable guarantees of safety-critical properties, 

but it is challenging to scale to complex systems as yet 

(Anderson et al., 2023) [1]. The multi-stakeholder 

governance model that proposes technical and ethical 

standards and regulatory controls is emerging as one of the 

key aspects of responsible AI application in the energy 

systems. 

 

7. Conclusions 

The Artificial Intelligence concept is rapidly altering the 

structure, operation, and strategic path of contemporary 

energy systems. The assessed evidence indicates that the AI-

driven Energy Management Systems may bring significant 

positive changes to the accuracy of predictions and real-time 

coordination, renewable energy integration, and the overall 

energy efficiency. On a large scale, these benefits have the 

potential to be used to decarbonize the grid and increase 

grid resilience. However, the performance of AI solutions 

depends on the quality of data infrastructures, the power of 

algorithms, and the readiness of institutions to admit the 

new threats, which is very crucial. The transformative 

power of AI, therefore, is not omnipresent and automatic, 

and it has to be complemented by a facilitating ecosystem in 

which the high-tech skill is integrated with an adequate level 

of governance and control. 

In addition to the confirmed benefits, new dimensions of 

vulnerability connected with the introduction of AI into the 

key energy operations are the privacy of information, the 

risks of cyber-attacks, the unexplainable nature, and the 

tendency to expand the disparity between the digitally 

optimised and underserved regions. These threats explain 

why the integrated strategy, which includes technical 

innovation and regulatory leeway, and social responsibility, 

is needed. With those strategic considerations in place, AI-

driven Energy Management Systems have a chance to 

become the backbone of sustainable and resilient energy 

infrastructures, and more intelligent, equitable, and 

environmentally-focused operations across the industry can 

be achieved. 

 

8. Recommendations: The policymakers and senior 

executives within the industry should engage in the 

clarification of responsible and flexible governance systems 

to ensure that the implementation of AI-based Energy 
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Management systems generates widespread utility to 

society, and the introduction of AI would not cause harm to 

the systemic layer. These frameworks should ensure 

transparency and safety conditions of AI models used in 

basic grid functions, implement information governance 

models, and implement stricter cybersecurity models that 

are specific to the problem of AI-based control systems. The 

sandboxes of regulations and regular audit checks will assist 

the institutions in managing the risks and in making the 

experimental and implementation endeavours accountable. 

Besides the governance responses, AI-based energy regimes 

in the long term must be long-lasting by focusing on 

specific investment in both digital and physical 

infrastructure. The governments and utilities must widen the 

interoperable data infrastructure scope, encourage broad 

technology standards, and encourage the development of 

open and modular tools of AI tools. The other crucial 

observation is that it is also warranted to guarantee equitable 

access to AI-EMS technologies and low-income families, 

rural families, and small businesses, specifically. In the 

absence of such kinds of interventions, the positive aspects 

of the AI implementation will be further consolidated in the 

possession of the already advantaged agents, which will 

further increase the energy and the digital disparities. 

Last but not least, the interdisciplinary research and 

workforce capacity should not be neglected as well to 

remain innovative and respond to the socio-technical nature 

of AI integration. Co-operative efforts should be encouraged 

among the engineers, computer scientists, social scientists, 

and policy makers to investigate the ethical implications, 

environmental implications, and behavioural implications of 

AI-driven energy management. These working alliances will 

assist in the development of solutions on a case-by-case 

basis that may not only be efficient but also safe and, in the 

process, sensitive. To allow the energy systems to be 

flexible to the introduction of AI technologies, some long-

term investments in knowledge sharing, capacity-building, 

and constant self-assessment must be carried out. 
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