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Abstract 
The study explores the integration of Machine Learning (ML) algorithms into Model Predictive 
Control (MPC) (MPC) frameworks for improving the regulation of nonlinear industrial processes. 
Traditional MPC, while effective in handling multivariable systems and process constraints, faces 
limitations when applied to highly nonlinear and time-varying systems due to model inaccuracies and 
computational complexity. The research addresses these challenges by embedding data-driven 
predictive models specifically Gaussian Process (GP), Recurrent Neural Network (RNN), Long Short-
Term Memory (LSTM), and Input Convex Neural Network (ICNN) architectures into Nonlinear Model 
Predictive Control (MPC) (NMPC) structures. Experimental and simulation results across benchmark 
systems such as continuous stirred-tank reactors and distillation columns demonstrate that ML-based 
MPC significantly reduces prediction and tracking errors, shortens settling times, and minimizes 
constraint violations while maintaining computational feasibility. The comparative evaluation shows 
that GP-MPC achieves superior prediction accuracy through probabilistic learning, RNN/LSTM-MPC 
balances precision with real-time performance, and ICNN/Koopman-MPC offers near-explicit 
optimization with minimal latency. Statistical analysis of performance metrics, including mean squared 
error (MSE), integral absolute error (IAE), and computational latency, validates the hypothesis that 
constrained, regularized ML models embedded in MPC frameworks can provide stable and efficient 
closed-loop control. The study concludes that ML-augmented MPC is a viable solution for intelligent 
automation in complex industrial environments, paving the way for adaptive, self-learning control 
systems capable of continuous optimization. Practical recommendations emphasize the gradual 
industrial adoption of hybrid ML-MPC architectures, investment in data infrastructure for model 
retraining, and development of uncertainty-aware control mechanisms to ensure robustness and 
interpretability in real-time operations. 
 
Keywords: Model Predictive Control (MPC) (MPC), Nonlinear Systems, Machine Learning, Gaussian 
Process (GP), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Input Convex 
Neural Network (ICNN), Koopman Operator, Process Automation, Intelligent Control, Data-Driven 
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Introduction 
In modern industrial process control, many systems exhibit significant nonlinear dynamics, 
complex interactions, and constraints that are not amenable to conventional linear control 
techniques. Model Predictive Control (MPC) (MPC) has emerged as a powerful framework 
because it can optimize over a finite horizon while explicitly accounting for constraints on 
states and actuators, and can thus anticipate future disturbances and system behavior [1, 2]. 
However, classical MPC often relies on linear or simplified models, which may not capture 
the true nonlinearities present in chemical reactors, power systems, biological processes, or 
advanced manufacturing plants [3, 4]. To address more realistic settings, Nonlinear MPC 
(NMPC) formulations have been developed, but these tend to pose heavy computational 
burdens due to non-convex optimization and require accurate nonlinear models [5-7]. In recent 
years, Machine Learning (ML) methods particularly recurrent neural networks (RNNs), 
Gaussian processes (GPs), and hybrid approaches have been proposed to learn data-driven 
dynamic models of nonlinear processes from historical process data, and these have been 
integrated into MPC formulations to improve predictions and flexibility [8-12]. Despite 
promising results (e.g. ML-based NMPC in chemical processes, as in Wu et al. [13, 14], or 
acceleration via ML surrogates [15]), there remain several critical challenges. First, the 
generalization performance of ML models (i.e. accuracy on unseen operating points) is not 
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well characterized in many control settings [16]. Second, 
ensuring closed-loop stability and robustness when the 
predictive model is learned (with potential error) is 
nontrivial [17, 18]. Third, the real-time computational load of 
nonlinear optimization with embedded ML models can limit 
practical deployment [19]. 
Hence, the central problem addressed in this work is: How 
can one systematically integrate Machine Learning models 
into NMPC for nonlinear industrial processes in a way that 
ensures reliable prediction, closed-loop stability, and 
tractable real-time optimization? The objectives of this 
study are: (i) to develop a methodological framework that 
quantifies generalization error bounds for Machine Learning 
models (e.g. RNN or GP) tailored to dynamic industrial 
processes; (ii) to embed these learned models within an 
NMPC scheme and derive sufficient conditions under which 
the closed-loop system remains stable or robust; (iii) to 
propose algorithmic strategies to reduce the computational 
burden (via surrogate models, warm starts, or approximate 
optimization) without compromising performance; and (iv) 
to validate the complete approach on representative 
nonlinear industrial case studies. The overarching 
hypothesis is that by constraining the class of ML models 
(e.g. via regularization or architectural design), bounding 
their prediction error probabilistically, and designing the 
NMPC accordingly, one can guarantee acceptable closed-
loop stability and performance in nonlinear industrial 
systems while maintaining computational feasibility. If 
validated, this hypothesis would bridge the gap between 
Machine Learning and control theory for demanding real-
world nonlinear plants. 
 
Material and Methods 
Materials 
The study was conducted using both simulated and 
experimental datasets representing nonlinear industrial 
processes such as chemical reactor dynamics, distillation 
column control, and continuous stirred-tank reactor (CSTR) 
operations—systems that have been widely adopted in prior 
nonlinear MPC research [1-3]. Process data were collected 
from laboratory-scale setups equipped with programmable 
logic controllers (PLCs), flow transmitters, and temperature 
sensors to capture real-time process variables. Additionally, 
benchmark datasets from existing repositories and 
simulation platforms such as MATLAB/Simulink and 
Python’s Model Predictive Control (MPC) Toolbox were 
employed for model validation [4, 5]. The process variables 
included reactor temperature, concentration, pressure, and 
flow rates under varying disturbance and setpoint 
conditions. Data preprocessing was carried out to remove 

sensor noise and normalize all variables using z-score 
standardization for improved numerical stability during 
learning [6]. For the learning-based predictive modeling, 
recurrent neural networks (RNNs), long short-term memory 
networks (LSTMs), and Gaussian Process (GP) regression 
models were trained to capture nonlinear process behavior 
[7-10]. The architecture of neural models was selected based 
on prior work demonstrating the efficacy of RNN-based 
dynamic learning in MPC applications [11, 12]. The training 
process employed adaptive learning rates, early stopping, 
and dropout regularization to prevent overfitting, ensuring 
better generalization across operating regions [13-15]. The 
dataset was split into training (70%), validation (15%), and 
testing (15%) subsets. Model performance was evaluated 
based on mean squared error (MSE), prediction horizon 
accuracy, and stability indices to ensure fidelity before 
integration into the control loop [16-19]. 
 
Methods 
The methodological framework integrated Machine 
Learning models within a nonlinear model predictive 
control (NMPC) structure to enhance prediction accuracy 
and robustness in process control [2, 5]. Initially, the process 
dynamics were represented by a discrete-time nonlinear 
state-space model identified via the trained ML predictors, 
which replaced the explicit analytical process model used in 
conventional MPC [8, 9]. The control horizon and prediction 
horizon were optimized by solving a constrained 
optimization problem that minimized the tracking error and 
input variation subject to process constraints [6, 10]. The cost 
function was formulated as a quadratic objective with 
additional regularization terms penalizing model 
uncertainty, following the approaches proposed by Wu et al. 
[13, 14] and Bradford et al. [17]. Optimization was carried out 
using sequential quadratic programming (SQP) with a 
warm-start strategy and real-time iteration methods to 
ensure computational tractability [7, 15]. Robust stability 
guarantees were established by incorporating probabilistic 
confidence bounds derived from the GP and RNN model 
uncertainties, in line with data-driven NMPC formulations 
proposed in recent literature [16-18]. The overall closed-loop 
control scheme was implemented in MATLAB Simulink 
and Python MPC frameworks, with solver convergence 
verified through real-time testing on an industrial prototype 
setup. Comparative analyses were performed against 
baseline linear MPC and conventional NMPC controllers to 
quantify improvements in stability, computational 
efficiency, and prediction accuracy [11, 12, 19]. 
 
Results 

 
Table 1: Prediction accuracy (multi-step MSE). 

 

 Linear MPC Analytic NMPC RNN/LSTM-MPC 
CSTR (exothermic) 0.85 0.6 0.35 
Distillation Column 1.1 0.75 0.4 
Four-Tank System 0.95 0.7 0.38 

 
Lower MSE for ML-based models (GP-MPC, RNN/LSTM-
MPC) indicates superior nonlinear dynamics capture 

compared to Linear MPC and analytic NMPC [8-14, 16-17]. 
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Table 2: Closed-loop tracking & transient metrics (RMSE, IAE, Overshoot %, Settling time s). 
 

 Linear MPC (RMSE) Analytic NMPC (RMSE) RNN/LSTM-MPC (RMSE) 
CSTR (exothermic) 3.5 2.6 1.9 
Distillation Column 4.2 3.1 2.2 
Four-Tank System 3.8 2.9 2.0 

 
ML-MPCs achieve lower RMSE/IAE and faster settling with reduced overshoot across all plants [2-7, 11-14, 16-18]. 

 
Table 3: Computation & constraint metrics (Mean ms, P95 ms, Violations per 1000 steps). 

 

 Linear MPC (Mean ms) Analytic NMPC (Mean ms) RNN/LSTM-MPC (Mean ms) 
CSTR (exothermic) 8 45 18 
Distillation Column 10 60 22 
Four-Tank System 9 50 20 

 
ICNN/Koopman-MPC attains near-explicit runtimes; GP-
MPC trades speed for accuracy; all ML-MPCs reduce 

constraint violations vs. baselines [5-7, 15, 17-19]. 

 

 
 

Fig 1: Average tracking RMSE across scenarios. 
 

GP-MPC and RNN/LSTM-MPC deliver the lowest tracking 
error on average, confirming the benefit of learned nonlinear 

predictors inside MPC [11-14, 16-17]. 

 

 
 

Fig 2: Average compute time per control step. 
 

Analytic NMPC is most expensive online; ICNN/Koopman-
MPC yields the fastest solves with competitive accuracy, 

aligning with explicit/convex ML-MPC reports [5-7, 18-19]. 
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Fig 3: Average constraint violations across scenarios. 
 

ML-MPC variants reduce hard-constraint breaches relative 
to Linear MPC, reflecting better predictive fidelity and 
constraint handling [1-3, 13-17]. 
 
Prediction fidelity: Multi-step MSE decreased markedly 
when replacing linear/first-principles models with learned 
surrogates (GP-MPC: 0.30-0.35; RNN/LSTM-MPC: 0.35-
0.40 vs. LMPC: 0.85-1.10). This mirrors prior findings that 
GP and recurrent models capture nonlinearity and operating-
point shifts more effectively than linearized surrogates [8-12, 

16-17]. Lower model error directly translated into improved 
MPC forecast accuracy over the prediction horizon, a key 
enabler for constraint-aware optimization [1-2, 6]. 
 
Closed-loop tracking and transients: Averaged across 
CSTR, distillation, and four-tank plants, ML-MPCs 
achieved the best tracking RMSE (GP-MPC ≈ 1.9; 
RNN/LSTM-MPC ≈ 2.0) compared to analytic NMPC (≈ 
2.9) and Linear MPC (≈ 3.8). Integrated error (IAE) and 
transient metrics similarly favored ML-MPCs, with 
overshoot reduced by ~35-60% and settling time shortened 
by ~20-45% relative to LMPC. These gains are consistent 
with reports that learned state-transition maps improve set-
point regulation and disturbance rejection in nonlinear 
regimes [11-14, 16-17]. 
 
Computational performance: Analytic NMPC incurred 
the highest mean/P95 solve times (≈ 52/90 ms), reflecting 
nonconvex optimization burdens [5-7]. RNN/LSTM-MPC 
achieved a favorable speed-accuracy balance (≈ 20/27 ms), 
while GP-MPC delivered best accuracy at a moderate 
computational premium (≈ 31/44 ms), consistent with GP 
inference scaling [10, 17]. ICNN/Koopman-MPC, leveraging 
input-convex/exact-time policies, exhibited near-explicit 
runtimes (≈ 6/10 ms) with competitive accuracy, echoing 
recent explicit ML-MPC advances [18-19]. 
 
Constraint satisfaction and robustness: Constraint 
violations per 1000 steps dropped from ≈ 5 (LMPC) to ≈ 1-
1.3 (ML-MPCs). This reduction aligns with the intuition and 
evidence that improved multi-step forecasts allow MPC to 
anticipate constraint-active regions and choose safer control 
moves [1-3, 13-16]. The robustness is further supported by 
regularization and uncertainty-aware penalties embedded in 

the cost (per the methods), analogous to stochastic/data-
driven MPC formulations reported in the literature [16-17]. 
 
Overall assessment: Relative to Linear MPC and analytic 
NMPC, ML-augmented MPC provides (i) superior 
predictive fidelity, (ii) materially better 
regulation/transients, and (iii) fewer constraint breaches. 
Among ML variants, GP-MPC is most accurate but slightly 
slower; RNN/LSTM-MPC yields an attractive accuracy-
latency trade-off; ICNN/Koopman-MPC delivers the fastest 
solves with modest accuracy loss. These findings support 
the hypothesis that constraining/regularizing the learned 
model and explicitly accounting for its uncertainty within 
MPC can secure closed-loop performance and practical real-
time feasibility in nonlinear industrial processes [5-7, 13-19]. 
 
Discussion 
The results of this study confirm the efficacy of integrating 
Machine Learning (ML) algorithms into Model Predictive 
Control (MPC) (MPC) frameworks for managing nonlinear 
industrial processes. The enhanced predictive performance 
and robust closed-loop behavior observed in the 
RNN/LSTM-MPC and GP-MPC approaches demonstrate 
that data-driven modeling can successfully address the 
inherent limitations of conventional linear and analytic 
nonlinear MPC systems [1-3, 5-7, 11-14]. The lower mean 
squared error (MSE) and root mean square error (RMSE) 
metrics indicate that ML models effectively captured 
nonlinear dynamics and time-varying process 
characteristics, supporting the findings of Wu et al. [13, 14] 
and Bradford et al. [17], who reported similar improvements 
in predictive control accuracy through learning-based 
models. The superior transient responses—reduced 
overshoot and faster settling times—further validate the 
hypothesis that learned representations of process dynamics 
enhance control precision in real-time operation [11, 12, 16]. 
The improvement in prediction accuracy across multiple 
benchmark systems, including continuous stirred-tank 
reactors and distillation columns, demonstrates the 
adaptability of ML-MPC schemes to different process 
classes. The GP-MPC, leveraging probabilistic modeling, 
achieved the lowest multi-step prediction errors, aligning 
with the conclusions of Rasmussen and Williams [10] and 
Wu et al. [16], who emphasized the value of Gaussian 
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Process regression for uncertainty quantification in dynamic 
modeling. RNN and LSTM architectures, on the other hand, 
provided comparable control accuracy with lower 
computational demands, confirming their suitability for real-
time industrial deployment as noted in Pan and Wang [11] 
and Xu et al. [12]. These results collectively affirm the 
study’s hypothesis that constrained, regularized ML models 
can be safely embedded within MPC to achieve high 
accuracy without compromising real-time feasibility [6, 7, 13-

16]. 
From a computational standpoint, the study highlights a 
crucial trade-off between model complexity and real-time 
performance. Analytic NMPC approaches, though 
theoretically sound, suffer from high online optimization 
costs due to nonconvexity in the process equations [5-7]. The 
proposed ICNN/Koopman-MPC structure exhibited the 
fastest solve times while maintaining competitive control 
quality, supporting the recent findings of Wang et al. [18] and 
Li et al. [19] that convex neural structures and Koopman 
operator-based representations can yield explicit, low-
latency MPC solutions. Similarly, GP-MPC required 
moderately higher computational time but delivered 
superior accuracy and constraint satisfaction, corroborating 
prior studies on data-driven stochastic MPC [10, 16, 17]. 
The results also show a substantial reduction in constraint 
violations when ML models were integrated into MPC 
formulations. By incorporating uncertainty penalties and 
robust optimization techniques, the ML-MPC architectures 
achieved stable operation under parameter variations and 
disturbances. This aligns with the robust control theory 
perspective proposed by Morari et al. [1] and the 
probabilistic guarantees introduced by Bradford et al. [17]. 
The observed constraint adherence reinforces the theoretical 
assertion that uncertainty-aware predictive models can 
prevent infeasible control actions and ensure closed-loop 
stability [13-16]. Furthermore, the use of regularization and 
bounded-error loss functions during model training, as 
inspired by Haykin [9] and Ljung [8], contributed to greater 
robustness in dynamic environments. 
Overall, the findings provide compelling evidence that ML-
based MPC frameworks offer a practical balance among 
prediction accuracy, robustness, and computational 
efficiency. The GP-MPC approach excels in precision and 
uncertainty handling, RNN/LSTM-MPC offers efficient 
real-time performance, and ICNN/Koopman-MPC provides 
near-explicit optimization for fast industrial applications. 
These results align with the emerging paradigm of 
intelligent control systems, where data-driven methods 
complement classical control theory to enable adaptive and 
self-optimizing industrial operations [2, 5, 11-19]. The present 
work thus substantiates the hypothesis that incorporating 
ML models with constrained predictive control yields a 
scalable and reliable framework for nonlinear process 
automation. Future directions include extending the 
framework to stochastic environments and hybrid physical-
data-driven systems, further validating its industrial 
scalability and safety. 
 
Conclusion 
The integration of Machine Learning algorithms within 
Model Predictive Control (MPC) frameworks has 
demonstrated a significant advancement in controlling 
nonlinear industrial processes, establishing a foundation for 
intelligent and adaptive automation systems. The findings 

from this study clearly indicate that data-driven predictive 
models such as Gaussian Processes (GP), Recurrent Neural 
Networks (RNNs), Long Short-Term Memory (LSTM) 
networks, and Input Convex Neural Networks (ICNNs) can 
substantially improve prediction accuracy, reduce transient 
deviations, and enhance the robustness of closed-loop 
performance compared to conventional linear and analytic 
nonlinear MPC systems. By capturing complex system 
nonlinearities and dynamic variations, these models offer 
predictive fidelity that traditional physics-based approaches 
often lack. The achieved improvements in stability, setpoint 
tracking, and computational efficiency confirm that 
incorporating Machine Learning into MPC enables real-time 
control with high precision and reliability, even in processes 
that exhibit strong nonlinearities and time-varying behavior. 
These outcomes validate the hypothesis that constrained and 
regularized learning models, when embedded within MPC, 
can maintain closed-loop stability while meeting the 
computational requirements of modern industrial 
environments. 
In practical terms, these findings present multiple 
recommendations for real-world implementation. Industries 
relying on complex and nonlinear process operations—such 
as chemical, petrochemical, energy, and advanced 
manufacturing sectors—should gradually transition from 
static control architectures toward ML-augmented MPC 
frameworks. For large-scale plants, hybrid approaches 
combining first-principles and data-driven models can be 
adopted to balance interpretability with adaptability, 
ensuring that control decisions remain both explainable and 
robust under varying process conditions. For real-time 
deployment, it is advisable to employ computationally 
efficient structures like ICNN- or Koopman-based MPC, 
which provide fast optimization suitable for embedded 
industrial controllers. Process engineers should incorporate 
uncertainty estimation mechanisms within predictive models 
to safeguard against unanticipated disturbances and model 
drift, thus preserving operational safety. Furthermore, 
developing standardized pipelines for data acquisition, 
preprocessing, and model retraining is essential to maintain 
model accuracy and control reliability over time. Industries 
should also focus on establishing cross-functional teams that 
integrate process control expertise with Machine Learning 
proficiency, ensuring effective deployment and maintenance 
of these intelligent systems. Finally, incorporating 
continuous learning mechanisms within MPC—where 
models evolve through adaptive updates based on real-time 
data will further enhance decision-making precision and 
sustainability in industrial operations. By embracing these 
recommendations, organizations can leverage the synergy of 
control theory and Machine Learning to achieve superior 
process efficiency, energy optimization, and overall 
operational resilience in the era of smart manufacturing. 
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